رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'باطری'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی
  • دانستنی های بیمه ای موضوع ها
  • Oxymoronic فلسفه و هنر

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. Mohammad-Ali

    منبع تغذیه

    سلام رادیویی است که هنگام استفاده ازآداپتور خرخر می کندولی با استفاده ازباطری صدای شفاف داریم. به نظرشمامشکل ازکجامی تواندباشد؟ وراه حل آن چیست؟
  2. Mahnaz.D

    یک روز.... یک زندگی

    سلام به همه.... راستش خیلی وقته می خواستم یه تاپیک بزنم در مورد خودم و حال و روزم و زندگیم.... اما نمی دونم چرا هر دفعه نمی شد می گن قسمته....شاید همین باشه! شایدم تنبلی اینجانب یه مدت دوستان هی می گفتن مهناز یه وبلاگ بزن....باور کنید خودم هم دلیل این پافشاری رو نفهمیدم!.... منم که تنبل...گفتم کی میره این همه راه رو.... کسی منو تو ین دنیای مجازی نمی شناسه...گفتم حداقل اینجا یه چیزایی بنویسم که 4 نفر منو می شناسن خلاصه این شد که با این تاپیک در خدمتتون هستیم بی زحمت اسپم نکنید....جیزه! هر چی خواستید بگید بیاید تو پروفایل خودم.... 24 ساعته در خدمتم
  3. امروز استفاده ازباطریهای قلمی دردسرزیادی دارد(چون دستگاها معمولادارای کیفیت شده!) مخصوصا اینای که توبازاره ماشاالله اکثراهم تقلبی ! حالا اگربا این باطری بدبخت یکمقدار بازبان کتک سخن گویی ادب می شود ودوباره نیرومی دهد.
  4. Mohammad-Ali

    ذخیره سازهای انرژی

    روش ذخیره انرژی تلمبه ای: در این روش در زمان کم مصرفی آب پشت سد را به بالا پمپ میکنند و در زمان پرمصرفی آبی که در ارتفاع قرار گرفته را به پایین رها میکنند و انرژی پتانسیل ذخیره شده در آن پره‏های توربین را می‏چرخاند: روش ذخیره انرژی بوسیله فشرده سازی هوا یا Compressed Air Energy Storage (CAES): این روش به این ترتیب هست که در زمان کم‏باری انرژی تولیدی اضافی یک موتور پمپ هوا را می‏چرخاند و این هوا در داخل زمین محبوس میشود و زمانیکه به انرژی نیاز است این هوای فشرده که در داخل زمین گرم هم شده است یک ژنراتور را می‏چرخاند. ۲ مدل از این روش در نیروگاه‏های دنیا وجود دارد:۱) در نیروگاه Huntorf در کشور آلمان ۲)در آلابامای آمریکا حال سوالی که پیش می‏آید این است که چرا بیشتر از این روش استفاده نمیکنند و پاسخ آن در یک کلمه: هزینه. نسبت انرژی ذخیره شده بوسیله سوخت‏های فسیلی به قیمت این سیستم ذخیره کننده به صرفه نیست اما به شدت برای تولیدات حاصل از انرژی‏های تجدیدپذیر مفید است. برای مثال وزش باد در شب بسیار بیشتر است اما از این انرژی در روز بیشتر استفاده می‏شود یا خورشید که در روز است و در شب از این انرژی باید استفاده نمود میتوان به این روش انرژی را ذخیره کرد: استفاده از باتری‏های مقیاس بزرگ یا Grid battry storage: یکی دیگر از راه‏های ذخیره انرژی بویژه برای انرژی های نو استفاده از باتری‏ها میباشد ولی این روش نسبتا پرهزینه است و توانایی ذخیره‏سازی انرژی کمتری دارند: روش ذخیره انرژی بوسیله چرخ طیار یا FlyWeel اخیرا صنعت شاهد پیدایش مجدد یکی از قدیمی ترین تکنولوژی های ذخیره سازی انرژی یعنی فلایویل بوده است. چرخ طیار های جدید دارای اشکال متنوعی هستند. از چرخ طیار های کامپوزیتی که برای سرعت های دورانی بسیار بالا مناسب هستند گرفته تا چرخ های فولادی قدیمی که به موتور های دورانی کوپل می گردند. واحدی که یکی از جالب ترین گونه های چرخ طیارهای نوین و قدیمی می باشد. این سیستم در حالیکه فضایی در حدود ۱۱ فوت مربع را اشغال می کند قادر است توانی برابر ۵۰۰ کیلو وات را منتقل نماید.اساس کار آن نیز از یک قانون قدیمی ناشی شده و آن این است یک جسم در حال دوار به حرکت خود ادامه می‏دهد تا زمانیکه یک نیروی خارجی آن را متوقف سازد. چرخ طیارها نسبت به تکنولوژی های قدیمی ذخیره انرژی دارای برتری های خاصی می باشند. یکی از این برتری ها به ساختار ساده ذخیره انرژی در آنها بر می گردد. یعنی ذخیره انرژی به صورت انرژی جنبشی در یک جرم در حال دوران. سالها از این ایده برای نرم و یکنواخت کردن حرکت موتورها استفاده می شد. در بیست سال اخیر به تدریج یک منبع جدید انرژی در اختیار طراحان و مخترعان قرار گرفت و طراحان از این منبع جدید در وسایل نقلیه الکتریکی و تجهیزات کنترل ماهواره استفاده کردند.ایمنی بالا، حجم کم، سازگاری با محیط زیست، پایین بودن هزینه تعمیر و نگه داری و داشتن عمر مفید بالا و قابل پیشبینی. اخیرا برای کنترل و ثابت نگه داشتن سرعت وقتی که منبع اصلی انرژی به طور متناوب قطع و وصل می شود از چرخ طیار استفاده می گردد. به دلیل نارضایتی مصرف کنندگان از باطری های الکتروشیمیایی و از طرف دیگر به علت پایین بودن هزینه تولید و عمر مفید بالای چرخ طیار اکنون در بسیاری از سیستم ها از این وسیله استفاده میشود. پس از پیشرفت های پی در پی در زمینه ی الکترونیک قدرت اولین بار از چرخ طیار به عنوان محافظ رادار استفاده شد و امروزه یک ابزار قدرت مند و کم هزینه، در حجم بالا به بازار تجهیزات انتقال قدرت ارائه می شود: سیستم ذخیره انرژی مغناطیس ابررسانا ایده اصلی این سیستم این است که در صورت تزریق جریان مستقیم به یک مدار ابررسانا، این جریان بدون تلفات تا بینهایت در حلقه بسته این مدار گردش خواهد کرد؛ و زمانی که نیاز به انرژی داشته باشیم، می توان انرژی ذخیره شده در این مدار را به شبکه تزریق کنیم. سیستم ذخیره انرژی مغناطیس ابررسانا انرژی را در میدان مغناطیسی حاصل از شارش جریان در یک سیم پیچ ابررسانا ذخیره می¬کند. بخش اصلی این سیستم، سیم پیچ ابررسانای آن است که برای حفظ حالت ابررسانایی آن، باید سیم پیچ را به وسیله یک سیستم خنک کننده در دماهای بسیار پایین نگه داشت تا خاصیت ابررسانایی خود را حفظ نماید؛ به عنوان مثال می توان آن را در یک محفظه خلاء یا هلیم مایع قرار داد، بنابراین مقاومت الکتریکی آن به صفر می رسد. از آنجایی که در سیستم ذخیره انرژی مغناطیس ابررسانا انرژی الکتریکی را به صورت دیگری از انرژی، همچون انرژی جنبشی یا شیمیایی تبدیل نمی کنیم، بازده آن بسیار بالا می‌باشد. هیچ جزء متحرکی در این سیستم وجود ندارد و بنابراین طول عمر آن بسیار زیاد است و به تعمیرات و نگهداری اندکی نیاز دارد. همچنین زمان پاسخ آن بسیار اندک است و در حدود چند میلی ثانیه می باشد. یک SMES نمونه از سه قسمت تشکیل شده است: سیم پیچ ابررسانا، سیستم مدیریت قدرت و یخچال سرد شده. وقتی سیم پیچ ابررسانا شارژ می‌شود، انرژی مغناطیسی تخلیه نمی‌شود و می‌توان از آن به عنوان ذخیره ساز انرژی استفاده کرد. سیستم ذخیره انرژی ابرخازن یکی دیگر از روش های ذخیره مستقیم انرژی الکتریکی استفاده از ابرخازن ها است. ابرخازن ها انرژی الکتریکی را در میدان الکتریکی خازن که بین هر الکترود و الکترولیت تشکیل می شود، ذخیره می کنند. با پیشرفت تکنولوژی و کاربرد الکترولیت های با ثابت دی الکتریک بالا امکان افزایش ذخیره انرژی در ابرخازن ها میسر می شود. ظرفیت و چگالی انرژی ابرخازن ها هزار برابر بزرگتر از خازن های الکترولیتی است. در مقایسه با باتری ها، ابرخازن ها چگالی انرژی پایین تری دارند؛ اما ابرخازن ها می توانند دهها هزار بار شارژ و دشارژ شوند و نسبت به باتری ها نرخ شارژ و دشارژ بسیار سریع تری دارند. مهم ترین ایراد ابرخازن ها هزینه بالا و لزوم استفاده از مبدل DC به AC در آنهاست که این امر نیز به خودی خود موجب کاهش بازده و افزایش هزینه می گردد. با پیشرفت بیشتر تکنولوژی ابرخازن ها، جایگزینی آنها به جای باتری ها یا کاربردهای کیفیت توان، تأمین بارهای پیک لحظه ای و گسترش کاربردهای ولتاژ بالا می باشد. امروزه استفاده همزمان از ابرخازن ها و باتری ها برای ذخیره انرژی الکتریکی مطرح گردیده است؛ در این صورت سیکل های شارژ و دشارژ باتری کاهش یافته و طول عمر آن افزایش می یابد. سیستم ذخیره انرژی بر پایه هیدروژن: اخیراً توجه بسیاری به سیستم های ذخیره انرژی بر پایه هیدروژن معطوف گردیده است. عناصر اصلی تشکیل دهنده این سیستم عبارتند از واحد تولید هیدروژن، مخزن ذخیره هیدروژن و سیستم تبدیل انرژی شیمیایی هیدروژن به انرژی الکتریکی (پیل سوختی ). از پیل سوختی به عنوان جانشین آینده واحدهای سوخت فسیلی نام برده می شود. هیدروژن یک منبع انرژی تجدیدپذیر نیست، بلکه یک حامل انرژی است که توسط یک انرژی ثانویه تولید و نهایتاً با سوختن در پیل سوختی، انرژی شیمیایی ذخیره شده در خود را آزاد می نماید. به عنوان مثال می توان انرژی مازاد الکتریکی در ساعات غیرپیک را صرف الکترولیز آب نموده و هیدروژن حاصل را در مخازن مخصوص ذخیره کنیم تا در زمان مطلوب در پیل سوختی تولید انرژی الکتریکی نمائیم. هیدروژن به وفور در طبیعت یافت می شود و چگالی انرژی بسیار بالایی دارد؛ اما در عین حال ذخیره آن مشکل است. به دلیل تبدیل چندباره انرژی در این سیستم، بازده آن در مقایسه با سایر سیستم های ذخیره انرژی کمتر می باشد. از سوی دیگر روند متراکم کردن و تبدیل هیدروژن گازی به مایع جهت ذخیره، به انرژی زیادی نیاز دارد. کاربرد اصلی این سیستم ها در اتومبیل های برقی و تولید انرژی الکتریکی به وسیله پیل سوختی است. بسته به فشار مخزن و بازده ترکیب الکترولیز پیل سوختی، بازده این سیستم بین 60% تا 80% می باشد. ذخیره انرژی حرارتی ذخیره انرژی حرارتی ، شامل تعدادی فناوری مختلف می‌شود که می‌توانند انرژی حرارتی (سرما و گرما) را در دماهایی مابین 40- تا 400 درجه سانتیگراد و در قالب مواردی چون گرمای نمایان، گرمای نهان و با استفاده از واکنش‌های شیمیایی ذخیره نماید. ذخیره انرژی حرارتی مبتنی بر گرمای نمایان مبتنی بر گرمای ویژه ماده ذخیره شده در تانکرهای ذخیره حرارتی با عایق بندی بسیار عالی است. مهمترین ماده ذخیره شده آب است که کاربری خانگی و صنعتی هم پیدا کرده است. ذخیره زیرزمینی گرمای نمایان در دو حالت مایع و جامد نیز برای کاربردهای بزرگ مقیاس استفاده می‌شود. در هر صورت سیستم‌های ذخیره حرارتی مبتنی بر گرمای نمایان، بوسیله گرمای مخصوص ماده ذخیره شده محدود می‌باشند و وابسته به ماده استفاده شده دارند. موارد تغییر دهنده فاز می‌توانند با ارائه گرمای نهان تغییر فاز، ظرفیت گرمایی بیشتری را معرفی نمایند. ذخیره ترموشیمیایی می‌تواند حتی ظرفیت ذخیره بیشتری را معرفی نماید. واکنش‌های ترموشیمیایی می‌توانند اندوخته و برگشت گرما و سرمای مورد نیاز در کاربردهای مختلف را بوسیله واکنش‌های مختلف شیمیایی فراهم نمایند. در حال حاضر، سیستم‌های ذخیره انرژی حرارتی مبتنی بر گرمای نهان تجاری شده‌اند و دو نوع دیگر سیستم ذخیره سازی انرژی حرارتی، همچنان در حال تحقیق و گسترش هستند. منابع: [Hidden Content] [Hidden Content] ویکی پدیا گوگل جان بابا
  5. توقع ما از باتری‌ها این است که انرژی مورد گجت هایمان را تأمین کنند. و اگر بتوانند بدون این‌که اندازه‌ی بزرگی داشته باشند با یک‌بار شارژ زمان معقولی را دوام بیاورند. و ترجیحاً درصورتی‌که مشکلی کوچکی در گجتمان به وجود آمد، منفجر نشوند. دانشجویان دکترای دانشگاه میشیگان باتری ساخته‌اند که تمام این ویژگی‌ها علاوه بر انعطاف‌پذیری را داراست. آن‌ها این باتری‌ها را از کولار kevlar)) ساخته‌اند. نیکولاس کوتوو، پروفسور دانشگاه میشیگان و سیو اون تونگ، دانشجوی دکترا، تصمیم گرفتند از نانوفیبر کولار به‌عنوان حایل میان الکترودهای یک باتری لیتیوم-یونی استفاده کنند. استفاده از کولار به تولیدکنندگان اجازه می‌دهد تعداد بیشتری الکترود را در بسته‌های کوچک‌تری جای دهند، و نتیجه‌ی آن افزایش توان همراه با کاهش ضخامت خواهد بود.همچنین خاصیت عایق بودن این ماده سبب جلوگیری از داغ شدن بیش‌ازحد این باتری‌ها می‌شود. تا اینجا که به نظر خوب می‌آید؛ اما در رابطه با نگرانی از انفجار چطور عمل می‌کند؟ دلیل انفجار باتری‌ها این است که گذرگاه‌های کوچکی که بین الکترودها وجود دارند به‌ مرور زمان از بین می‌روند و باعث اتصال کوتاه می‌شوند. اما حالا صفحات نازک نانوفیبر کولار مابین الکترودها را عایق‌بندی می‌کنند و اجازه‌ی عبور جریان یون‌های لیتیوم را در مسیرهای بسیار مشخصی می‌دهد. این موجب توقف شکل‌گیری الگوهای سرخس-گونه می‌شود (که دندریت نامیده می‌شوند) که نهایتاً منجر به اتصال کوتاه باتری و انفجار آن می‌شود. حایلی از جنس کولار، یون‌ها را در مسیر مشخصی نگه می‌دارد و از این فاجعه به‌وسیله‌ی منفذهای بسیار کوچکی که حتی به نازک‌ترین دندریت‌ها هم اجازه‌ی عبور نمی‌دهد، جلوگیری می‌کند. درحالی‌ که باتری‌های کولار این دانشگاه هنوز در مرحله‌ی آزمایشگاهی است، سی شرکت درخواست استفاده از این روش را داده‌اند، بنابراین ما احتمالاً تا سال ۲۰۱۶ این‌گونه باتری‌ها را در دسترس خواهیم داشت.به هر حال نه گفتن به باتری‌های نازک‌تر، توانمندتر و ایمن‌تر کار ساده‌ای نخواهد بود. منبع: فارنت
  6. یک تیم تحقیقات بین‌المللی موفق شده است تا با وارد کردن نانوذرات طلا به ساختار پلی‌اورتان، پلیمر رسانا و انعطاف‌پذیر تولید کند. این فیلم رسانا کاربردهای وسیعی در تولید ادوات الکترونیکی انعطاف پذیر دارد. قطعات الکترونیکی انعطاف‌پذیر دارای کاربردهای متعددی است. برای مثال می‌توان از این قطعات در نمایشگرهای انعطاف‌پذیر، باتری‌ها و ادوات پزشکی استفاده کرد. نیکولاس کوتوف و همکارانش موفق شدند با افزودن نانوذرات طلا به پلی‌اورتان هدایت الکتریکی آن را افزایش دهند با این کار می‌توان صفحه‌های رسانا و انعطاف‌پذیر تولید کرد. این گروه تحقیقاتی از دانشگاه میشیگان نشان دادند که وجود نانوذرات طلا در ساختار پلیمر استحکام پلیمر را نیز بهبود می‌دهد. کوتوف می‌گوید: این کامپوزیت، حاوی نانوذرات به صورت فلز منعطف عمل می‌کند. از این روش می‌توان برای تولید کامپوزیت‌هایی حاوی نانوذرات مختلف استفاده کرد که کاربردهای متنوعی نیز خواهد داشت. این کامپوزیت در صورتی که دو برابر حالت اولیه خود کشیده شود هنوز رسانای الکتریکی خوبی است، پژوهشگران می‌کوشند تا این ساختار را به اشکال مختلف نظیر زیگزاگی یا فنری شکل در آورند. پژوهشگران این پروژه از این که افزودن نانوذرات طلا به پلیمر پلی‌اورتان می‌تواند انعطاف‌پذیری و تعداد الکترون‌های در حال حرکت را افزایش دهد شگفت‌زده هستند. نتایج این پژوهش در نشریه Nature به چاپ رسیده است. یونسیب کیم، نویسنده اول این مقاله می‌گوید: ما دریافتیم که در هنگام کشیده شدن پلیمر، نانوذرات به صورت زنجیره‌ای در یک صف قرار می‌گیرند به همین دلیل هدایت الکتریکی آن نیز افزایش می‌یابد. کوتوف می‌گوید: با کشیدن این پلیمر، نانوذرات در آن به نحوی تغییر وضعیت می‌دهند که رسانایی پلیمر حفظ شود. به همین دلیل است که این کامپوزیت هم دارای انعطاف‌پذیری و هم هدایت الکتریکی مناسبی است. این گروه تحقیقاتی موفق شده‌اند تا با استفاده از دو ماده مختلف، ساختار جدیدی با ویژگی‌ها جالب توجه ارائه کند. برای این کار از دو روش لایه‌ای و *****کردن استفاده شده است. محصولی که از روش لایه‌ای بوجود می‌آید دارای رسانایی بیشتری است در حالی که روش *****کردن منجر به محصول منعطف‌تر می‌شود. ساختار لایه‌ای که حاوی 5 لایه طلا است دارای هدایت الکتریکی 1100 S/cm بوده در حالی که اگر همین 5 لایه با استفاده از روش *****کردن بدست آید رسانایی 1800 S/cm را خواهد داشت. از این کامپوزیت می‌توان برای تولید الکترود در باتری‌های انعطاف‌پذیر استفاده کرد. این باتری‌ها در بخش جراحی‌های مغز قابل استفاده است. چنین الکترودهایی به دلیل انعطاف‌پذیری دارای دوام زیادی در مغز خواهد بود. منبع : Elastic electronics: Stretchable gold conductor grows its own wires منبع : مجله بسپار
  7. شرکت پودرمت همکاری مشترکی با چند سازمان دولتی در آمریکا آغاز کرده است تا فناوری‌های جدید خود را تجاری‌سازی کند. فناوری‌های این شرکت نوعی نانوکامپوزیت بوده که می‌توان از آن برای افزایش دانسیته انرژی باتری‌ها استفاده کرد. شرکت آباکان (Abakan) یکی از شرکت‌های پیشرو در حوزه پوشش‌های پیشرفته و محصولات فلزی است. این شرکت اعلام کرده که پودرمت (Powdermet)، یکی از شرکت‌های زیرمجموعه آباکان، قصد دارد تا همکاری مشترکی با آژانس‌های دولتی انجام دهد. در قالب این همکاری مقرر شده تا نانوکامپوزت‌های موسوم به EnCompTM Energetic و EMComPTMMicrocomposite تجاری‌سازی شوند. این آژانس‌ها قصد دارند تا از این نانوکامپوزت‌ها در تولید ادوات ذخیره‌سازی انرژی با دانسیته بالا و همچنین تولید لولا‌هایی با مصرف انرژی پایین مورد استفاده قرار گیرند. محصول خروجی این شرکت می‌تواند در حوزه‌هایی نظیر انرژی، دفاعی و حمل و نقل مورد استفاده قرار گیرد. رابرت میلر از مدیران این شرکت می‌گوید پودرمت در پی‌ نوآوری‌های متعدد در طول یک دهه گذشته بوده است، در نتیجه تجربیات و یافته‌های ما موجب شده تا شرکایی از بخش‌های مختلف برای همکاری مشترک به ما بپیوندند. در حال حاضر این شرکت روی تجاری‌سازی یافته‌های اخیر خود است، یافته‌هایی که ماحصل تحقیق و توسعه دانشمندان این شرکت است. ما انتظار داریم که بازاری چند میلیارد دلاری از صنایع مختلف برای این مواد ایجاد شود. محصول EnCompTM Energetic یک نانوکامپوزیت است که می‌تواند موجب بهبود دانسیته انرژی و دانسیته توان باتری‌ها شود. در حال حاضر این شرکت در تلاش است تا از این نانوکامپوزیت برای تولید باتری‌های بادوام که امکان تولید ولتاژ بالا در طولانی مدت را دارند، استفاده کند. پودرمت از نانوذرات سنتز شده برای تولید این نانوکامپوزیت استفاده می‌کند که در نهایت ماده‌ای دی الکتریک با دانسیته انرژی 20 تا 30 J/CC بدست آید. این ویژگی موجب شده تا پتانسیل‌هایی برای بهبود باتری‌ها فراهم شده تا بتوان از آنها در خودروها و دیگر ادوات قابل حمل و نقل استفاده شود. براساس پیش‌بینی‌های انجام شده توسط نانومارکت، تا سال 2017 بازار نانودی‌‌الکتریک‌ها به 500 میلیون دلار خواهد رسید. این نانودی‌الکتریک‌ها می‌توانند جایگزین قطعات موجود در باتری‌های فعلی شده و در صنایعی نظیر الکترونیک و خودروسازی استفاده شوند. انتظار می‌رود بین 5 تا 7 سال آینده بازار این مواد به یک میلیارد دلار برسد. منبع: مجله بسپار
  8. این که آیا گوگرد یک محصول فرعی و یا یک محصول زائد از پالایش نفت و احتراق زغال سنگ است بستگی به نوع برش آن دارد. قطعا، مقدار زیادی از گوگرد را می توان برای تولید اسید سولفوریک، کود و سایر مواد شیمیایی استفاده کرد، اما مقداری از آن نیز، برای استفاده آینده انباشته می شوند (با توجه به نیاز به خنثی سازی زائده های اسیدی). محققان دانشگاه آریزونا به این فکر افتادند که گوگرد می تواند روزی در نتیجه ی یک جریان شیمیایی جدید برای ساختن پلیمر مورد استفاده قرار گیرد. طبق ادعاهای محققان، این ماده جدید می تواند به تولید یک نسل جدید باتری های لیتیم-گوگرد سبک تر و کارآمدتر منجر شود. طبق محاسبات نویسنده شرکت، جرارد گریبل، هر ۱۹ گالن بنزین حدود نیم پوند (۲۳۰ گرم) گوگرد به عنوان مواد زائد تولید می کند. از ۶۰ میلیون تن گوگرد تولید شده در هر سال، ۷ میلیون تن مازاد بر نیاز هستند. با آگاهی از همه ی این مقدار گوگرد مازاد، محقق و شیمیدان جفری پیون، در زمینه ی بررسی این مشکل، به این مساله پرداخت که چگونه می توان از این مقدار مازاد برای ساخت نوع جدیدی از باتری های لیتیم-گوگرد (Li-S) استفاده کرد. رویکرد جدید از گوگرد مایع برای ساختن پلیمر قابل شکل پذیری استفاده می کند در حالی که معمولا گوگرد به دلیل عدم تمایل به تشکیل زنجیره های پلیمر، مناسب نمی باشد. پژوهشگران بیش ار ۲۰ مواد شیمیایی را که احتمالا به ترکیب شدن گوگرد منجر می شد، شناسایی کرده و هر کدام از آنها را به وسیله حل کردن در گوگرد مایع، تست کرده اند. در اولین روز تلاششان، divinylic styrenic comonomers به وجود آمد. فقط یک مقدار نسبتا کمی از این افزودنی شیمیایی نیاز است که بنابراین باعث شد محققان این جریان را وولکانش معکوس بنامند (وولکانشی (حرارت آتشفشانی) شامل اضافه کردن مقدار کمی گوگرد به لاستیک برای ماندگاری و دوام آن می باشد. محققان گزارش داده اند که پلیمر گوگرد، "خواص الکتروشیمیایی قابل مقایسه با گوگرد عنصری " با یک ظرفیت بخصوص ۸۲۳ میلی آمپر ساعت بر گرم را بعد از ۱۰۰ چرخه ی شارژ نمایش می دهد، اما با مزایای اضافی حل پذیری آسان و قابلیت ذوب (برخلاف گوگرد های عنصری). این ظرفیت خاص به عنوان بالاترین ظرفیت یک مواد پلیمری تاکنون ثبت شده است. اگرچه این یک راه حل معجزه آسای فوری در افزایش عملکرد باتری های لیتیم- گوگرد نمی باشد اما امید است که این توسعه به کلاس جدیدی از کاربردهای باتری در آینده منجر شود. محققان عنوان کردند که این ماده ی جدید ممکن است برای کاربردهای نوری نیز مناسب باشد. منبع : پینا
  9. Siamak

    باطری خورشیدی

    چكيده در اين مقاله تاثير تراكم گرد و غبار بر عملكرد كلكتورهاي سهموي خورشيدي بررسي شده است.اصول كار بر اين منوال است كه ابتدا مقادير ضريب عبور شيشه ها در حالتهاي مختلف از نظر ميزان آلوده بودن به گرد وغبار اندازه گيري شده و مقدار ضريب تصحيح نوري در حالتهاي مختلف حساب شده است.سپس از طريق شيه سازي كامپيوتري تاثير گرد و غبار بر عملكرد كلكتور خورشيدي بررسي شده است.در خاتمه ميزان كاهش راندمان كلكتور در اثرگرد و غبار مشخص شده و درصد كاهش راندمان عملي كلكتور خورشيدي نسبت به راندمان تئوري بيان شده است. واژه هاي كليدي: كلكتورخورشيدي-راندمان نوري وحرارتي-گردوغبار فهرست علائم A مساحت معادل كلكتور (Aperture Area ) Ar سطح مقطع لوله گيرنده FR فاكتور جابجايي گرما Frt ضريب تصحيح نوري Fr ضريب تصحيح انعكاسي Ft ضريب تصحيح عبوري Ib تابش مستقيم خورشيد K(q) زاويه برخورد اصلاحي qu انرژي مفيد جذب شده بر واحد سطح كلكتور Ta درجه حرارت محيط Ti درجه حرارت روغن ورودي به كلكتور UL ضريب افت حرارتي فهرست علائم يوناني g ضريب دريافت hc راندمان حرارتي ho راندمان نوري r ضريب انعكاس آينه ها (ta)n ضريب جذب - عبور نرمال مقدمه انرژي مفيد جذب شده دركلكتورهاي سهموي خورشيدي و راندمان اين سيستمها در عمل ، همواره كمتر از مقدار محاسبه شده توسط روابط تئوري مي باشد . از دلايل اين اختلاف مي توان به انواع نواقص و خطاها درهنگام ساخت اشاره كرد . انحراف آينه ها از حالت سهموي ، پخش نور بازتاب شده توسط آينه ها ، عدم قرارگيري لوله گيرنده دركانون آينه ، عدم رديابي خورشيد و... از جمله مواردي است كه مي توان برشمرد [1و2] . علاوه برخطاهاي فوق تاثير گرد وغبار و تراكم آن برروي سطوح شيشه اي (آينه ها و لوله شيشه اي ) سبب كاهش نرخ ميزان انرژي دريافتي در كلكتورهاي سهموي خطي مي شود . و اين پديده به نوبه خود سبب كاهش ميران راندمان عملي اين سيستمها مي شود [3و4] . البته ميزان گرد وغبار با توجه به شرايط محيطي و محل قرارگيري كلكتور ، اثرات متفاوتي بركاركرد آن مي گذارد و براي تعيين تاثير آن بر كاركرد كلكتور نياز به اطلاعات آماري روزها مختلف سال در مكانهاي مختلف مي باشد . در سالهاي اخير براساس سياست معاونت انرژي وزارت نيرو در بهره برداري از انرژيهاي تجديد پذير ، اقدام به ساخت نيروگاه خورشيدي پايلوت 250 كيلوواتي شيراز شده است . از آنجا كه مهمترين عنصر اين نيروگاه ، كلكتورهاي آن مي باشد ، قبل از ساخت آن يك كلكتور خورشيدي نمونه ساخته شده كه درحال حاضر درمرحله آزمايش مي باشد . دراين مقاله سعي شده است تا با اطلاعات بدست آمده از كاركرد كلكتور سهموي نيروگاه خورشيدي شيراز رابطه اي براي راندمان اين دستگاه ارائه شود و در ساخت نيروگاه از اطلاعات بدست آمده از كاركرد كلكتور استفاده گردد . تئوري در شكل 1 طرح شماتيكي از سيكل الحاقي رسم شده است . اين سيكل شامل كلكتور خورشيدي ، مخزن ذخيرة روغن ، پمپ ، لوله هاي اتصال و شيرهاي تنظيم جريان مي باشد . در ضمن سيكل به وسايل اندازه گيري دبي جريان و دماي روغن ، سرعت باد ، شدت تابش مستقيم خورشيد مجهز مي باشد. شكل 1- طرح شماتيكي از سيكل كلكتور خورشيدي تصوير كلكتور خورشيدي در شكل 2 نشان داده شده است. هر كلكتور خورشيدي سهموي داراي يك سري آينه هاي خميده مي باشد كه پرتوهاي تابيده شده را بر روي لولة گيرندة انرژي متمركز مي كنند . كل اين مجموعه بر روي يك سازة نگهدارنده نصب مي شود و توسط يك سيستم ردياب ، خورشيد را در طول روز تعقيب مي كند . انرژي پرتوهاي خورشيد توسط لولة گيرنده جذب شده وبه روغن انتقال مي يابد و بدين طريق دماي روغن در سيكل افزايش مي يابد. شكل 2- كلكتور خورشيدي سهموي دانشگاه شيراز مشخصات عمومي كلكتور عبارتند از : عرض كلكتور340 سانتيمتر ، طول كلكتور 25 متر ، زاويه دور (rim angle)90 درجه ، فاصله كانوني 88 سانتيمتر ، قطر خارجي لولة جاذب 2/4 سانتيمتر ، قطر داخلي لولة جاذب 5/3 سانيتمتر ، قطر خارجي پوشش شيشه اي 7 سانتيمتر ، ضخامت لولة شيشه اي 3 ميليمتر،ضريب جذب لولة گيرنده 0.94 ، در دماي 300 درجة سانتيگراد ضريب صدور لولة جاذب 25/0 مي باشد . راندمان كلكتور از موازنه انرژي برلوله گيرنده بدست مي آيد كه مي توان آنرا بصورت نسبت نرخ انرژي مفيد به شدت تابش مستقيم برواحد سطح كلكتور تعريف كرد [1] . ( 1 ) FR ، UL و ho سه پارامتر مهم در طراحي كلكتورهاي سهموي مي باشند . فاكتورجابجايي گرما ( FR ) ، راندمان لوله گيرنده انرژي مي باشد وقتيكه بصورت يك مبدل حرارتي در نظر گرفته شود و بيانگر قابليت سيال از نظر انتقال ميزان انرژي تشعشعي جذب شده مي باشد . ضريب افت حرارتي ( UL ) به ميران افت حرارتي از لوله گيرنده بصورت هدايتي ، جابجايي و تشعشي بستگي دارد . ho راندمان نوري كلكتور به ضريب انعكاس آينه ها ، ضريب عبور لوله شيشه اي ، ضريب جذب لوله گيرنده انرژي و خطاهاي اپتيكي بستگي دارد [5] . ( 2) روابط (1) و(2) بيانگر راندمان حرارتي و راندمان نوري كلكتور مي باشند . درروابط فوق ضريب انعكاس آينه ها و ضريب عبور لوله شيشه اي در حالت تميز و نو در نظر گرفته شده است و اثرات گرد و غبار كه درعمل باعث كاهش راندمان سيستمهاي خورشيدي مي شود ، منظور نشده است . براي اينكه مقادير بدست آمده از رابطه (1) با واقعيت مطابقت بيشتري داشته باشد رابطه (1) بصورت زير اصلاح مي شود . ( 3 ) Frt ضريب تصحيح نوري بيانگر نرخ كاهش راندمان نوري كلتور مي باشد كه بصورت حاصلضرب ضريب تصحيح انعكاسي در ضريب تصحيح عبوري تعريف مي شود . ( 4 ) Ft نسبت ضريب عبور لوله شيشه اي در عمل به ضريب عبور لوله شيشه اي نو و تميز و Fr نسبت ضريب انعكاس آينه ها در عمل به ضريب انعكاس آينه هاي نو و تميز مي باشد . ضريب تصحيح نوري به موقعيت نصب كلكتور ، وضعيت آب و هوايي محيط ، تعداد شستوهاي انجام شده در مدت زمان مشخص و مرغوبيت جنس مواد از نظر طول عمر و كاركرد مناسب بستگي دارد . براي تعيين مقدار ضريب تصحيح نوري دور روش بيان شده است . دراين مقاله از روش ارائه شده در مرجع [6] براي كلكتورهاي خورشيدي استفاده شده است. روش ارائه شده بصورت يك تكنيك تجربي براساس انجام آزمايشهاي متعدد مي باشد . اصول كار بر اين اساس است كه سطوح نوري را به گرد و غبار با غلظتهاي متفاوت آلوده كرده و تاثير آنرا بر راندمان كلكتور از طريق شبيه سازي كامپيوتري سيستم برآورد مي كنند . در نتيجه مي توان تعييرات راندمان نوري و راندمان حرارتي كلكتور را با تعيير ميزان آلودگي براحتي محاسبه كرد . روش دوم نير يك روش تجربي است . دراين روش عملكرد كلكتور سهموي درروزهاي مختلف سال ارزيابي مي شود و كليه اطلاعات مربوط به شرايط كاركرد شامل ميزان آلودگي هوا ، وزش باد ، دماي محيط، دبي جريان ، ميزان تشعشع خورشيد و دفعات شستشو و ... ثبت مي شود سپس راندمان كلكتور محاسبه شده و راندمان عملي سيستم را با راندمان بدست آمده از شبيه سازي كامپيوتري مقايسه كرده و بدين طريق مقدار ضريب تصحيح نوري بصورت نسبت راندمان تئوري تقسيم بر راندمان عملي محاسبه مي شود [7] . البته اين روش به شرطي قابل اجراست كه تمام نواقص و خطاهاي موجود در كلكتور ساخته شده معلوم و محاسبه شده باشد . براي دستيابي به اطلاعات بيشتر علاوه بر شبيه سازي كامپيوتري ، ضريب عبور لوله شيشه اي و شيشه آينه ها در سه حالت خيلي تميز (بدون هرگونه آلودگي ) تميز (عاري از گرد و غبار ولي داراي لكه هاي حاصل از خشك شدن آب ) و كثيف آلوده به گرد و غبار اندازه گيري شده است [5] و راندمان كلكتور برحسب تغييرات فوق رسم شده است . نتايج در شكل 3 ضريب عبور لوله شيشه اي براي سه حالت خيلي تميز ( عاري از گرد و غبار ) ، تميز ( شامل لكه هاي ايجاد شده از خشك شدن طبيعي قطرات آب ) و كثيف ( آلوده به گرد و غبار ) رسم شده است . جنس لوله شيشه اي از نوع شيشه پيركس مي باشد . متوسط ضريب عبور شيشه براي اين سه حالت بترتيب برابر 86/0 ، 81/0 و 55/0 مي باشد . لذا ميزان ضريب تصحيح عبوري براي لوله شيشه اي در حالت 2 و 3 نسبت به حالت 1 بترتيب برابر 94/0 و 64/0 مي باشد . چون قسمت نقره كاري شده آينه در ميان شيشه و چندين لايه رنگ محصور است ، در نتيجه گرد و غبار بر روي ضريب انعكاس ، از طريق ضريب عبور شيشه اثر مي گذارد . لذا در شكل 4 ضريب عبور لوله شيشه اي براي سه حالت خيلي تميز ( عاري از گرد و غبار ) ، تميز ( شامل لكه هاي ايجاد شده از خشك شدن طبيعي قطرات آب ) و كثيف ( آلوده به گرد و غبار ) رسم شده است . جنس شيشه آينه ها ، شيشه ساختماني از نوع شيشه فلوت مي باشد . متوسط ضريب عبور شيشه براي اين سه حالت بترتيب برابر 77/0 ، 65/0 و 42/0 مي باشد . لذا ميزان ضريب تصحيح انعكاسي براي آينه ها در حالت 2 و 3 نسبت به حالت 1 بترتيب برابر 84/0 و 55/0 مي باشد . بنابر اين ميزان ضريب تصحيح نوري در اين دو حالت بترتيب برابر 79/0 و 36/0 مي شود . شكل 3 - ضريب عبور لوله شيشه اي شكل 4 - ضريب عبور شيشه آينه ها در شكل 5 راندمان نوري و حرارتي كلكتور خورشيدي در روز اول مهر ماه ( شرايط طراحي كلكتور ) با توجه به تغييرات ضريب تصحيح نوري در طول روز رسم شده است . همانطور كه ملاحظه مي شود براي ضريب تصحيح نوري 79/0 و 36/0 راندمان حرارتي كلكتور بترتيب داراي 22% و 61% افت مي باشد. شكل 5 - تغييرات راندمان نوري و حرارتي كلكتور ير حسب ضريب تصحيح نوري دبي جريان در اين روز kg/s 1 در نظر گرفته شده است (بايد ذكر شود كه راندمان كلكتور به ازاي يك دبي دلخواهتعيين شده است و با تغيير دبي راندمان هم تغيير خواهد كرد) . در شكل 6 مقادير دماي محيط و تابش مستقيم خورشيد براي ساعات مختلف روز اول مهرماه رسم شده است . مقدار دماي محيط از طريق روابط تجربي و ميزان تابش مستقيم خورشيد از طريق رابطه دانشيار براي ضريب ابر 131/0 حساب شده است [7]. شكل 6 - دماي محيط و تابش خورشيد در روز اول مهر ماه
×
×
  • اضافه کردن...