رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'ترموپلاست'.



تنظیمات بیشتر جستجو

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
  • فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


شماره موبایل


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

4 نتیجه پیدا شد

  1. *mishi*

    پلي يورتان

    الاستومرهاي پلي يورتاني، خانواده‌اي از كوپليمرهاي توده‌اي بخش شده است كه كاربردهاي مهمي در زمينه‌هاي گوناگون صنعتي و پزشكي پيدا كرده است. اولين پلي يورتان، از واكنش دي‌ايزوسيانات آليفاتيك با دي‌آمين به‌دست آمد. اتو باير و همكارانش اولين بار اين پلي‌يورتان را معرفي نمودندکه به شدت آبدوست بود و بنابراين به عنوان پلاستيك يا فيبر نمي‌توانست مورد استفاده قرار گيرد. واكنش بين دي‌ايزوسيانات‌هاي آليفاتيك و گليكول‌ها منجر به توليد پلي يورتاني با خصوصيات پلاستيكي و فيبري گرديد. به دنبال آن، با استفاده از دي‌ايزوسيانات آروماتيك و گليكول‌هاي با وزن مولكولي بسيار بالا، پلي‌ يورتاني به‌دست آمد كه خانواده مهمي از الاستومرهاي ترموپلاستيك به شمار مي‌رود. خواص يورتانها از مواد ترموست بسيار سخت تا الاستومرهاي نرم تغيير مي‌كند. از پلي يورتانهاي ترموپلاستيك، در ساخت وسايل قابل كاشت بسيار مهمي استفاده مي‌شود، چرا كه داراي خواص مكانيكي خوب نظير استحكام كششي، چقرمگي، مقاومت به سايش و مقاومت به تخريب شدن، به علاوه زيست سازگاري خوب مي‌باشند كه آنها را در گروه مواد مناسب جهت كاربردهاي پزشكي قرار مي‌دهد. كاربردهاي پلي يورتان‌ها با استفاده از پلي اترها به عنوان پلي‌ال، در سنتز پلي يورتان مي‌توان كاشتني‌هاي طولاني مدت تهيه نمود، كه در قلب مصنوعي، کليه مصنوعي، ريه مصنوعي، هموپرفيوژن، لوزالمعده مصنوعي، *****هاي خوني، کاتترها، عروق مصنوعي، باي‌پس سرخرگ‌ها يا سياهرگ‌‌ها، کاشتني‌هاي دندان و لثه، بيماريهاي ادراري، ترميم زخم، رساندن يا خارج كردن مايعات، نمايش فشار عروق، آنژيوپلاستي، مسدود کردن عروق، جراحي عروق آئورت و كرونري، دريچه‌هاي قلب ‌سه‌لتي و دولتي كاربرد دارند. در صورتي كه از پلي اترها به عنوان پلي‌ال، در سنتز پلي يورتان استفاده شود، پلي يورتان‌هاي زيست تخريب پذير مدت تهيه مي‌شود كه به طور مثال در کانال هدايت بازسازي عصب، ساختارهاي قلبي –عروقي، بازسازي غضروف مفصل ومنيسک زانو، براي تعويض وجايگزيني استخوان اسفنجي، در سيستم‌هاي رهايش کنترول شده دارو و براي ترميم پوست كاربرد دارد. شكل (1) برخي از وسايل و ايمپلنت‌هاي پلي‌يورتاني مورد استفاده در پزشكي را نشان مي‌دهد. تاثير ساختار شيميايي و مورفولوژي سطح روي خون سازگاري پلي يورتان در اواخر سال 1980 تعدادي از دانشمندان، شيمي، ساختار و مورفولوژي سطح پلي‌يورتان‌ها را مورد بررسي قرار دادند و به تدريج روش‌هاي جديد پوشش دهي سطح به‌همراه پيوندهاي مواد ديگر به سطح پلي‌يورتان‌ها، با هدف بهبود خونسازگاري ابداع شد. در سالهاي اخير، ترکيب شيميايي پلي‌يورتان‌ها جهت بهبود خونسازگاري با تغييرات بسيار زيادي همراه شده است. از جمله اين موارد سنتز پلي‌يورتان يا پلي‌يورتان ِيورا با قسمت‌هاي نرم آبدوست است. «Cooper»، نيز در مورد ارتباط بين شيمي پلي‌ال‌ها و خون‌سازگاري پلي‌يورتانها، تحقيقاتي را برروي نمونه‌هاي مختلف پلي‌يورتانها با پلي‌ال‌هاي متفاوت نظير PEO، PTMO، PBD (پلي‌بوتادين) و PDMS انجام داد. اين پلي‌يورتان‌ها به روش پليمريزاسيون دو مرحله‌اي تهيه شدند و بر روي لوله‌‌هاي پلي‌اتيلني پوشش‌دهي شده و سپس درون بدن سگ قرار گرفتند تا پاسخ لخته‌زايي آنها مشخص گردد. پلي‌يورتان با پلي‌ال PDMS کمترين لخته‌زايي را نسبت به نمونه‌هاي ديگر نشان داد. طبيعت آبگريز PDMS باعث بهبود آبگريزي سطح پلي‌يورتان پايه PDMS و در نتيجه توجيهي براي بهبود خون‌سازگاري آن نسبت به ساير موارد مي‌شود و ميزان چسبندگي اوليه پلاکت‌ها با افزايش آبدوستي پلي‌ال‌ها افزايش مي‌يابد. بنابراين بايد گفت که خون‌سازگاري پلي‌يورتان‌ها بستگي زيادي به ترکيبات سازنده آن و عوامل مختلف نظير جداسازي ميکروفازها، ناهمگني سطح و آبدوستي سطح خواهد داشت. استفاده از سولفونات يا پوشش‌هايي نظير هپارين در تغيير پاسخ خون به اين مواد نقش بسيار عمده‌اي را ايفا مي‌کنند. محققي به نام Santerre [55]، پلي‌يورتان‌هايي را بر پايه سولفونات سنتز نمود که داراي گروه‌هاي مختلف سولفور(3.1 % - 1.4%) بود. در نمونه‌هاي با گروه‌هاي سولفونات بيشتر زمان لخته‌زايي افزايش يافت. روشهاي بهبود خواص سطحي پلي‌يورتانها با توجه به اينکه خونسازگاري يک بيومتريال بستگي مستقيم به شيمي سطح آن دارد، تغيير در وضعيت سطحي کمک بسيار زيادي در حل مشکلات خون‌سازگاري خواهد نمود. از جمله موادي که در اين مورد نتايج و رضايت بخشي را در بهبود خونسازگاري نشان داده‌اند، ‌مي‌توان به سولفونات پلي‌اتر يورتان، پيوند سطح اکريل آميد و دي اکريل آميد با پلي‌اتر يورتان، اتصال فسفوريل کولين به سطح پلي‌اتر يورتان با استفاده از پرتو UV و پيوند پروپيل سولفات – پروپيلن اکسايد (PEO-SO3)، اشاره نمود. در سالهاي اخير محققان زيادي براي افزايش بهبود خونسازگاري بيومتريال‌ها از پيوند هپارين به سطح آنها استفاده نموده‌اند كه نتايج رضايت‌بخشي نيز به همراه داشته است. يکي از مهمترين مشکلات در اين راه، پيوند يوني هپارين (surfaces bearing ionically bound heparin ) به سطح پلي‌يورتان است. هپارين مي‌تواند بصورت کووالاني با گروههاي آمين يا هيدروکسيل آزاد ايزوسيانات پيوند برقرار سازد. در بين تمام روشهايي که باعث تثبيت هپارين ‌مي‌شود، موثرترين روش استفاده از تابش اکسيژن پلاسماي يونيزه شده است که باعث پيوند با پليمر ‌مي‌شود. نتايج خونسازگاري حاصل از هپارينيزه شدن پلي‌يورتان‌، نشانگر فعاليت کمتر پلاکتها و پروتئين‌هاي پلاسما است که منجر به کاهش تشکيل لخته خون مي‌شود. همچنين چسبندگي سلولهاي تک هسته‌اي و ترشح فاکتور نکروز تومور در تماس با پلي‌يورتان هپارينيزه شده کمتر گزارش شده است. از ديگر راههايي که ‌مي‌توان بدون استفاده از پوشش‌هاي هپاريني به يک پلي‌يورتان خون سازگار دست يافت، پوشش دهي يا تثبيت شيميايي داروهاي ضد لخته زا يا مولکولهايي نظير مشتقات Urookinase ، Prostacyclin، ADPase، Dipyridamol، Glucose و اتمهاي نقره گزارش شده است. پلي‌يورتان‌هاي داراي گروه‌هاي سولفونات، لخته زايي بسيار کمي نسبت به پلي‌يورتان‌هاي معمولي داشت. پلي‌يورتان‌هاي سولفونات شده ترومبين (آنزيم مؤثر براي ايجاد لخته) را مصرف کرده و بر پليمريزه شدن فيبرينوژن تأثير مستقيم مي‌گذارد. ايجاد پيوند کووانسي پپتيد Arg-Gly-Asp (RGD)، با ستون اصلي پليمر نيز يکي ديگر از روش‌هاي بهبود خواص خون‌سازگاري پلي‌يورتان‌ها است كه در نتيجه چسبندگي سلول‌هاي اندوتليال به سطح پليمر افزايش مي‌يابد. تخريب پلي يورتان‌ها همه پليمرها امكان تخريب دارد و پلي يورتان‌ها نيز از اين قاعده مستثني نيست جهت جلوگيري از تخريب پلي يورتان‌ها روش‌‌هاي مختلفي وجود دارد. كه شامل هيدروليز، فتوليز، سلوليز، توموليز، پيروليز (تجزيه در اثر حرارت) وتخريب بيولوژيك، ترك بر اثر استرس محيطي، اكسيد شدن و تخريب بوسيله ميكروب و قارچها مي‌شود. در حالت بيولوژيك تنش محيطي باعث ايجاد ترك مي‌شود كه در نهايت شكست ممكن است به‌وجود آيد و باعث ايجاد تخريب سطحي ويژه در پليمر شود. آنزيم‌ها نيز مي‌توانند باعث تخريب پلي يورتان‌ها شود. تخريب ميكروبي، يك واكنش تجزيه شيميايي است كه به‌وسيله حمله ميكرو ارگانيسم‌ها صورت مي‌گيرد. آنزيم‌ها و قارچ‌ها نيز ممكن است پلي يورتان‌ها را تخريب كند. پيوندهاي مستعد براي تخريب هيدروليتيك در پلي يورتان‌ها، پيوندهاي استري و يورتاني است. استرها به اسيد و الكل تجزيه مي‌شود و پيوندهاي يورتاني در نتيجه تخريب شدن به كرباميك اسيد و الكل هيدروليز مي‌شود. تركيبات مسئول تخريب پليمرها در بدن شامل آب، نمك، پراكسيدها و آنزيمها است. به‌طور كلي مولكولهايي مانند ويتامين‌ها و راديكالهاي آزاد باعث تسريع كردن تخريب مي‌شود. اگر پلي يورتان هيدروفوب باشد تخريب معمولاً در سطح مواد انجام مي‌شود. اگر پلي يورتان‌ها هيدروفيل باشد، آب در توده پليمر وارد شده و تخريب در سرتاسر ماده اتفاق مي‌افتد. تخريب پليمر در مايع Media ( پلاسما و بافت ) به طوركلي شامل مراحل زير است. 1) جذب مديا در سطح پليمر، 2) جذب مديا به توده پليمر، 3) واكنشهاي شيمايي با پيوندهاي ناپايدار در پليمر و 4) نقل و انتقال توليدات تخريب از ماتريكس پليمر و جذب سطحي محصولات تخريب از سطح پليمر. تاثير آبدوستي بر ميزان تخريب پلي يورتان‌هاي يكي از مشكلات اصلي كاشت پلي يورتان‌ها در حالت vivo in تمايل آنها براي آهكي شدن و تخريب شدن است. اكثر ايمپلنت‌هاي پلي يورتاني در حالت in vivoاز طريق هيدروليز تخريب مي‌شود. الاستومرهاي زيست تخريب پذيردر ايمپلنت‌هاي قلبي و عروقي، داربستها براي مهندسي بافت، ترميم غضروف مفصل، پوست مصنوعي و درتعويض و جانشيني پيوند استخوان اسفنجي استفاده مي‌شود. مواد هيدروفيل مانند هيدروژل‌ها، به عنوان سدي براي چسبندگي بافت‌ها استفاده مي‌شود. موادي با هيدروفيلي كم، باعث چسبندگي تكثير سلول‌ها مي‌شود كه براي داربستهاي مهندسي بافت مناسب است. واكنش پلي يورتان زيست تخريب پذير با استئوبلاست‌ها و كندروسيت‌ها و ماكروفاژها كاربرد پليمرهاي زيست تخريب پذير به عنوان يكي از پيشرفت‌هاي عمده در تحقيقات مواد درپزشكي مطرح است. مواد زيست تخريب پذيركاربردهاي بي‌شماري در پزشكي و جراحي دارند واين مواد طوري طراحي شده است كه در حالت in vivo تخريب شود. تصور كلي از زيست سازگاري بر اساس واكنش ميان يك ماده و محيط بيولوژيك است. واكنش بافت‌ها و سلول‌ها در خيلي از موارد بوسيله پاسخ التهابي مشخص مي‌شود. در مهندسي بافت از ماتريس‌ها و داربستهاي زيست تخريب‌پذير پليمري به عنوان حامل سلول براي بازسازي بافت‌هاي معيوب استفاده مي‌شود. به‌طور كلي، ايمپلنت‌ها نبايد باعث پاسخ غيرعادي در بافت‌ها و باعث توليد مواد سمي يا تأثيرات سرطان زائي در بافت شوند. در تحقيقات جديد، پلي يورتان‌هاي زيست تخريب پذير زيست سازگاري مطلوبي از خود نشان مي‌دهد. اين پلي يورتان‌ها هر چند كه باعث فعال شدن ماكروفاژها مي‌شود ولي تأثيرات سمي و سرطان زائي در بدن ندارد. در تحقيقات in vivo، فوم پلي يورتان زيست تخريب پذير،زيست سازگاري مطلوبي را از خود نشان داده است. در يك تحقيق جديد، جهت ارزيابي زيست سازگاري از فوم پلي استر پلي يورتان زيست تخريب پذير با سايز سوراخها 100-400 m استفاده شده و واكنش كندروسيت‌هاي و سلول‌هاي استئوبلاست موش [line Mc3T3-E1] با فوم پلي يورتان زيست تخريب پذير( Degrapol -foam) مورد بررسي قرار گرفته شده است پاسخ سلولي که شامل: رشد، فعاليت سلول‌ها و پاسخ سلولي استئوبلاست‌ها و ماكروفاژها به محصولات تخريب در نظر گرفته شد. سلول‌هاي استئوبلاست‌ها و كندرويست‌ها از موش‌هاي صحرايي نر بالغ جدا شده بود. جهت سنتز اين كوپليمر نيز مقدار برابر از PHB– دي‌ال و پلي کاپرولاکتون دي‌ال در 1 و2 دي كلرو اتيلن حل شده وبه صورت آزئوتروپيكالي به‌وسيله برگشت حلال تحت نيتروژن خشك، سنتز شد. اين پلي استريورتان، يك بخش آمورف و يك بخش كريستالي دارد و همچنين دي ال با PHB تشكيل حوزه‌هاي كريستالي مي‌دهد و دي ال با پلي كاپر.لاكتون تشكيل حوزه‌هاي آمورف مي‌دهد. پس از كشت سلولي، اسكن به‌وسيله ميكروسكوپ الكتروني ( SEM) نشان مي‌دهد كه سلول‌ها در سطح و داخل حفره‌هاي فوم رشد مي‌كند و سلول‌هايي كه در سطح فوم ديده مي‌شود و به صورت يك نمايش سلولي مسطح و چند لايه سلول متلاقي، ديده مي‌شود. نتايج به‌دست آمده نشانگر اين مطلب است كه استئوبلاست‌ها و ماكروفاژها توانايي بيگانه خواري و فاگوسيتوز محصولات تخريب را دارندو محصولات تخريب در غلظت كم، تأثيري در رشد و عملكرد استئوبلاست‌ها نمي گذارد. به‌طور كلي كندروسيت‌ها و استئوبلاست‌ها در فوم زيست تخريب پذير تكثير يافت و فنوتيب‌شان را نگاه داشت. اين مطلب نشان مي‌دهد كه اين داربستها براي مراحل ترميم استخوان مفيد است.
  2. mim-shimi

    مقدمه‌ای بر پلیمر

    پلیمر یک واژه یونانی است. و از اتصال زنجیرهای کوچک منومرساخته میشود. که انصال این زنجیره ها را پلیمریزاسیون گویند. فرایند پلیمریزاسیون عموماً به دو صورت انجام میشود که خود نیاز به یک بحث طولانی و پیچیده میباشد. ویژگی برتر این مواد پلیمری : سبکی، سختی و در عین حال انعطاف پذیری، مقاومت در برابر خوردگی، رنگ پذیری، شفافیت، سهولت در شکل پذیری و بسیاری از خواص مورد استفاده در کاربردهای مختلف. پلیمرها عموماً به دو دسته پلاستیکها و لاستیکها تقسیم میشوند. وهر دو گروه نیز خود به پلیمرهای گرمانرم(termoplast) و گرما سخت (termoset) تقسیم میشوند که بطور مفصل شرح داده خواهد شد. به خاطر اینکه مواد پلیمری به تنهایی نمی توانند مورد مصرف قرار گیرند در محل تولید (پتروشیمی) یا صنایع پایین دستی بنا به شرایط و کاربرد آنها از مواد افزودنی (addetive) استفاده میشود. به طور مختصر بعضی از این افزودنی ها ذکر میشود. مواد پرکننده (filler): مانند خاک رس یا در اکثر موارد کربنات کلسیم یا سیلیکا استفاده میشود و علت افزودن آنها کاهش قیمت است و تأثیری در افزایش خواص ندارد. از افزودنی مثل الیاف کوتاه یا پولک جهت بهبود خواص مکانیکی استفاده میشود. منظور از خواص مکانیکی کاهش خزش و استحکام در برابر تنش و ... میباشد. روان کننده ها (lubricant): این مواد ویسکوزیته پلیمر مذاب را کاهش داده و شکل پذیری در قالب ها را آسان تر میکند. مانند استارات کلسیم. رنگدانه ها (pigment): جهت ایجاد رنگهای گونگون در پلاستیکها به کار میروند. نرم کننده ها (plasticizers): موادی با وزن مولکولی و طول زنجیره کمتر نسبت به رنجیره پلیمرها که خواص و مشخصه شکل گیری پلیمرها را کمتر میکند. بهترین نمونه کاربرد آن DOP دی اکتیل فتالات، در تهیه PVC پلی وینیل کلراید میباشد که باعث انعطاف پذیری آن میشود. پی وی سی تقریباٌ سخت میباشد و در موارد استفادهایی که انعطاف پذیری نیاز داریم بوسیله این ماده آن را نرم میکنیم. مثال ساده استفاده در سفره ها (به بوی خاص و تند آن توجه کنید همان DOP است) و دمپایی ها و داشبوردهای پیکان های مدل قدیم! میباشد. و اگر به ترک! داشبورد بعضی از آنها توجه کنیم مربوط به از بین رفتن (پریدن) این افزودنی میباشد. استحکام دهنده ها(reinforcement) : با افزودن موادی نظیر الیاف شیشه یا الیاف کربن مقاومت و سفتی پلیمرها افزایش و بهبود می یابد. نظیر فایبر گلاس ها یا بدنه هواپیما و بعضی از خودروها مانند سیناد2 ! پایدار کننده ها(stabilizers) : این افزودنی ها از فساد و تخریب پلیمرها در مقابل عوامل محیطی مانند نور خورشید (اشعه UV) و رطوبت و ... جلوگیری میکند. مانند مواد ضد اکسایش که به پلاستیکهایی نظیر ABS اکریو نیتریل-بوتادین- استایرن ، پلی اتیلن و پلی استایرن اضافه میشود و پایدارکننه های حرارتی که معمولاٌ برای شکل دهی PVC به کار میرود. مواد ضد آتش زا(inflammable) : از این مواد در پلیمرهای استفاده میشود که خطر آتش سوزی در محل میباشد. بعضی از پلیمرها مانند PVC که حوای ماده کلر(ضد آتش) میباشد، در هنگام آتش سوزی خود اطفا میباشد و خاموش میشود. همچنین گاز وجود گاز خنثی نیتروژن در فوم های پلی استایرن (سقف کاذب) نیز باعث اطفاء حریق میباشد.
  3. mim-shimi

    نایلون

    تهیه نایلون 6 و 6 به روش پلیمریزاسیون پلی آمیدها ترکیباتی هستند که واحد –Ca-NH- در آنها تکرار شده است که پلی آمیدهای آلیفاتیک مهمترین این پلیمرها هستند. پلی آمیدها معمولا یا بطریق آمید شدن مستقیم یک دی‌اسید با یک دی‌آمین و یا بطریق خود آمیدشدن یک آمینو اسید تهیه می‌شوند. بسپارش آمینو اسیدها از این جهت که تمایل زیادی به حلقه شدن دارند، سودمند نیست. یکی از مهمترین پلی آمیدها ، پلی هگزا متیلن آدیپامید است که یک لیف پلاستیک عالی با دمای ذوب بلورین (265 درجه سانتی‌گراد) بالاست. نایلون 6 و6 که بطور متوسط تهیه شده است، در حد متوسط بلورین است. جهت تهیه الیاف نایلون 6 و 6 نیاز به هگزا متیلن دی آمین و اسیدآدیپیک است. هگزا متیلن دی آمین از هیدروژناسیون آدیپونیتریل (که خود از ترکیب آمونیاک و اسیدآدیپیک تهیه می‌شود)، بدست می‌آید و اسید آدیپیک از اکسیداسیون سیکلوهگزان تهیه می‌شود. وزن مخصوص نایلون 6 و 6، حدود 1,14 است. در مجاورت هوا و در 150درجه سانتی‌گراد شروع به زرد شدن می‌کند و در 250درجه سانتی‌گراد ذوب می‌شود. ولی در مجاورت ازت بدون زرد شدن در 263 درجه سانتی‌گراد ذوب می‌شود. در برابر شعله آتش نمی‌گیرد، ولی ذوب می‌شود. نایلون 6 و 6 پایدار و دارای الاستیسیته خوبی است. این الیاف در برابر پاره شدن ، تغییر شکل دادن ، سایش و فرسایش مقاومت زیادی دارند. ضمنا اسیدها و قلیایی‌های ضعیف و مواد شوینده ، روی آن بی‌اثرند. این نایلون در شرایط متعارفی تنها %4 رطوبت جذب می‌کند و باکتری‌ها روی این الیاف رشد نمی‌کنند. با مقایسه با الیاف سلولزی مقاومت بیشتری در برابر شعله خورشید دارد. نایلون 6 و 6، عایق الکتریسیته ساکن است و بدلیل کاربردش در ماشین‌های نساجی مسئله‌ای ایجاد نمی‌کند. رنگ پذیری نایلون 6 و 6 بسیار عالی است. از این نایلون 6 و 6 ، در تولید انواع فرشهای ماشینی ، رویه مبلمان و پرده استفاده می‌شود. نایلون 6 و 6 در تولید کلیه لباسهای زنانه و مردانه مصرف می‌شود. همچنین در تورهای ماهی‌گیری ، چترهای نجات ، طناب ، نوارهای نقاله ، نخهای خیاطی و... مصرف دارد. روش آزمایش 5 میلی لیتر از محلول 5 درصد آبی هگزا متیلن دی‌آمین را به داخل بشر بریزید. سپس 5 قطره از محلول 2M آمونیاک بدان اضافه کنید. بدقت 5 میلی لیتر از محلول 5 درصد آدیپوئیل کلراید در سیکلوهگزان را از دیواره بشر روی فاز آبی منتقل کنید. دو لایه تشکیل می‌گردد و سطح تماس با لایه‌ای از پلیمر پوشیده می‌شود. این لایه را بوسیله گیره مناسبی روی بهمزن شیشه‌ای پیچیده و آن را بچرخانید. در طی چرخش بطور پیوسته پلیمر تشکیل شده و نهایتا پس از مصرف معرفها ، پلیمر بریده می‌شود. پلیمر آمید (نایلون 6 و6) حاصله را چندین بار با آب شسته و روی کاغذ صافی جهت خشک کردن قرار دهید. [Hidden Content] هدف آزمایش تهیه نایلون 6 (پرلون) [TABLE=align: left] [TR] [TD][/TD] [/TR] [TR] [TD] ساختمان نایلون[/TD] [/TR] [/TABLE] تئوری آزمایش روش‌های تهیه پلی ‌آمیدها با روش‌های تهیه پلی ‌استرها مشابهند. در سال 1936، دانشمند آلمانی "شلاک" موفق به پلیمریزاسیون کاپرولاکتام و تولید نایلون 6 شد. این نایلون به نام تجارتی "پرلون" در اروپا وارد بازار شد و پس از جنگ جهانی دوم ، تولید نایلون 6 در اکثر کشورها شروع شد. پرلون (Perlon) ، پلی آمید مشهوری است که در اشل صنعتی از واکنش خود تراکمی 6- آمینوهگزانوئیک اسید بدست می‌آید. این ترکیب از طریق نوآرایی "بکمن" سیکلوهگزانون اکسیم و تبدیل به 4- کاپرولاکتام قابل دسترسی است. وزن مخصوص نایلون ، 1.14است و در حدود 215-220 درجه سانتی‌گراد ذوب می‌گردد. وسایل و مواد مورد نیاز برای تولید در صنعت رآکتور (بزرگ برای اشل صنعتی) کاپرولاکتام دی‌اکسید تیتان اسید استیک سیسم ریسندگی روش تهیه در مرحله اول برای تولید صنعتی ، (چون مرحله اول پلیمریزاسیون) ، کاپرولاکتام مذاب همراه کمی دی‌اکسید تیتان و اسید استیک توسط یک فیلتر وارد لوله‌های رآکتور پلیمریزاسیون می‌شود، پلیمری که تولید گردید، پس از خروج از رآکتور بالافاصله وارد سیستم ریسندگی می‌گردد. در مرحله دوم که شامل ریسندگی است، نایلون 6 به حالت مذاب وارد منافذ ریزی شده و از آن به صورت رشته‌های ظریفی خارج می‌گردد. این رشته‌ها ، 5 برابر طول خود کشیده می‌شوند. سپس با آب بشویید و خشک کنید و به صورت کلاف بپیچید. [TABLE=align: left] [TR] [TD][/TD] [/TR] [TR] [TD] دست مصنوعی نایلونی[/TD] [/TR] [/TABLE] نتیجه آزمایش الیاف حاصل ، الیاف نایلون 6 است. مهم‌ترین کاربرد نایلون 6 ، در ساخت تایر اتومبیل ، تولید نخ ماهیگیری به قطر 0.1mm تا 1.5mm برای مصارف ماهیگیری ، تهیه طناب به اقطار مختلف تا 10cm برای بستن و یدک کشیدن کشتی‌ها ، ساخت لوله ، تولید جوراب و انواع لباسهای مختلف زنانه و مردانه ، ساخت فرشهای ماشینی ، موکت ، پرده ، رویه مبل و بافت انواع دیگر پارچه است. سوالات خواص نایلون 6 را با نایلون 6و6 مقایسه کنید. با ذوب مقدار کمی نایلون 6، در داخل بوته چینی و توسط چراغ ، رشته نازکی را از مذاب با کمک سیم نازک بیرون کشیده و استحکام و سایر خواص فیزیکی آن را بررسی کنید. می‌توانید فرمول ساختمانی نایلون 6 را پیدا کنید؟ فکر می‌کنید نایلون 6 در چه حلال‌هایی حل می‌شود؟ [Hidden Content]
  4. كاربردهاي مستقيم و جايگزيني مواد ابداعي جديد در صنعت خودرو و بويژه در قطعات پليمري، به دليل فشارهاي شديد قيمت در حال شكل‌گيري هستند. يكي از مهمترين جايگزيني‌ها،‌ جايگزيني مواد ترموپلاستيك الاستومر (TPE) با ترموست الاستومرهاست. ترموپلاستيك الاستومرها كه گاهي «ترموپلاستيك رابرها» نيز ناميده مي‌شوند،‌ دسته‌اي از كوپليمرها يا تركيبي فيزيكي از پليمرها (عموماً يك پلاستيك و يك رابر) هستند كه هم داراي خواص ترموپلاستيك‌ها بوده و هم از خواص الاستومرها برخوردارند. اغلب الاستومرها، ترموست هستند و غيرقابل بازيافت. اين الاستومرها داراي فرايند توليد گران و نسبتاً پيچيده‌اي بوده اما خواص الاستيكي آنها كاربردهاي وسيع دارد. ترموپلاستيك‌ها داراي فرايند توليد نسبتاً آسانتري هستند. در واقع،‌ ترموپلاستيك الاستومرها مزاياي ويژه هر دو گروه مواد ترموپلاستيك و الاستومر را از خود نشان مي‌دهند. براي مثال مي‌توانند همانند ترموپلاستيك‌ها براحتي فرايند و بازيافت شده و همانند الاستومرها، خاصيت الاستيكي و جذب شوك را از خود نشان دهند. معرفي الاستومرها به صورت كلي به دو دسته ذيل تقسيم مي‌شوند: ترموپلاستيك‌ها ترموست‌ها ساختار ترموپلاستيك الاستومرها، موادي هستند كه وقتي گرم مي‌شوند،‌ مكرراً نرم/ ذوب مي‌شوند و وقتي سرد مي‌شوند، سخت مي‌گردند. در واقع، ترموپلاستيك‌ها در دماي مناسب ذوب شده و فرايند شكل‌دهي (به عنوان مثال قالبگيري يا اكستروزن) بر روي آنها اعمال شده و پس از سرد شدن، ‌شكل دلخواه را به خود مي‌گيرند. اغلب ترموپلاستيك‌ها، در حلال‌هاي مخصوص حل مي‌شوند و تا برخي درجات مي‌سوزند. دماي نرم‌شدگي يا ذوب با نوع گونه (گريد) پليمر تغيير مي‌كند. به خاطر حساسيت دمايي ترموپلاستيك‌ها مي‌بايستي مراقب تخريب، تجريه و احتراق اين مواد بود. اغلب زنجيره‌هاي مولكولي در ترموپلاستيك‌ها را مي‌توان مستقل و همانند رشته‌هاي درهم پيچيده اسپاگتي، در نظر گرفت (نمودار1). نمودار1: زنجيره‌هاي ترموپلاستيك اين مواد،‌ وقتي گرم مي‌شوند (مثلاً براي قالبگيري) لغزش زنجيره‌هاي منفرد آنها باعث جريان پلاستيك مي‌شود و وقتي سرد مي‌شوند زنجيره‌هاي مولكولي و اتمي،‌ مجدداً محكم نگه داشته مي‌شوند. خاصيت امكان تكرار چرخه ذوب و سخت شدن،‌ امكان بازيافت ترموپلاستيك‌ها را از قطعات توليدي و نيز تبديل مجدد آنها به محصول جديد را به وجود آورده است. البته با هر بار ذوب شدن، خواص كيفي محصول جديد،‌ افت خواهد كرد. در تعداد چرخه‌هاي حرارتي و سرمايشي محدوديت‌هايي تجربي وجود دارد. اين محدوديت‌ها را مي‌توان قبل از اينكه خواص ظاهري و مكانيكي ترموپلاستيك‌ها تحت تاثير قرار گيرند، به آنها اعمال كرد. ترموست الاستومرها، فقط يك تغيير شيميايي را تحمل مي‌كنند. اين امر باعث غيرقابل حل/ ذوب‌شدن دائمي آنها مي‌شود. اين فرايند ولكانيزاسيون يا پخت ناميده مي‌شود كه پس از شكل‌دهي از طريق اعمال حرارت،‌ شكل قطعه تثبيت مي‌شود و به دليل ايجاد اتصالات عرضي بين زنجيره‌هاي مولكولي،‌ امكان ذوب مجدد قطعه وجود ندارد. تفاوت اصلي ترموست الاستومرها و ترموپلاستيك الاستومرها، نوع پيوندهاي اتصالات عرضي در ساختار آنهاست. در واقع، اتصالات عرضي، عامل ساختاري بحراني اين مواد بوده و در خواص الاستيك آنها سهم بسزايي دارد. اتصالات عرضي در پليمرهاي ترموست، پيوند كووالانسي است كه طي فرايند ولكانيزاسيون ايجاد مي‌شود. اتصالات عرضي پليمرهاي ترموپلاستيك الاستومر، پيوندهاي هيدروژني،‌ يا دو قطبي ضعيف‌تر بوده و يا تنها در يكي از فازها وجود دارد. از آنجا كه مواد TPE مي‌توانند قالبگيري يا اكسترود شده و مجدداً همانند ترموپلاستيك‌ها مورد استفاده مجدد قرار گيرند، از قابليت بازيافت برخوردار بوده و مضافاً داراي خواص ويژه الاستيك رابرها نيز هستند كه به دليل دارا بودن مشخصات ترموستي، برگشت‌پذير نيستند. همانگونه كه در نمودار 2 مي‌توان ديد،‌ هنگامي كه ترموست‌ها سفت شده يا پخت مي‌شوند، اتصالاتي عرضي بين مولكول‌هاي مجاور تشكيل مي‌شوند و شبكه‌اي به هم پيوسته و پيچيده را به وجود مي‌آورد. نمودار2: شبكه به هم پيوسته ترموست الاستومر پس از پخت اين پيوندهاي عرضي، از لغزش زنجيره‌هاي منفرد جلوگيري كرده و مانع از جريان پلاستيك به هنگام افزوده شدن دما مي‌شوند. اگر بعد از تكميل پيوندهاي عرضي، دماي بيش از اندازه به ترموست الاستومر داده شود، پليمر بجاي ذوب، تخريب خواهد شد. فرايند قابليت تكرار فرايند در ترموپلاستيك الاستومرها، عمده‌ترين مزيت TPEها نسبت به ترموست رابرهاست. ديگر تفاوت‌هاي كليدي فرايند، در جدول 1 ارائه شده است. جدول 1: تفاوت‌هاي كليدي فرايند در نمودار 3، تفاوت مراحل فرايند بين توليد با TPE و رابرها نمايش داده شده است. براساس اين نمودار، كاهش مراحل توليد، كاهش زمان توليد و بازيافت محصول، كاملاً مشهود است. نمودار3: فرايند در ترموپلاستيك الاستومر و رابر مزيت‌هاي TPE نسبت به ترموست‌ها انعطاف طراحي هزينه توليد كمتر زمان فرايند كوتاهتر اختلاط كم يا بدون نياز به اختلاط بازيافت ضايعات سازگاري محصولات امكان قالبگيري دمشي امكان ترموفرم مصرف انرژي پايين‌تر كنترل كيفيت بهتر بر روي محصول فرايند ساده‌تر محدوده وسيع‌تر چگالي هزينه تمام‌شده محصول پائين‌تر به ازاي هر قطعه زيست سازگاري بهتر يكي از مزيت‌هاي اصلي كاربرد TPEها، زيبايي محصول و قدرت تزييني آنهاست. در شكل يك چند مثال از تاثيرات بصري استفاده از TPEها به جاي رابرها، ارائه شده است. شكل 1: معايب ترموپلاستيك الاستومرها در مقايسه با الاستومرها يا ترموست‌ها دسته جديد TPEها، واحد عيب عمده قيمت بالاتر مواد اوليه است. (شكل2) همچنين عدم امكان استفاده از پركننده‌هاي ارزان‌قيمت مانند دوده در آنها كه باعث مي‌شود نتوان از TPEها در توليد تاير استفاده كرد. از ديگر معايب آنها مي‌توان به مقاومت پايين حرارتي و شيميايي (در برابر روغن) اشاره كرد. همانطوريكه در شكل 2 ديده مي‌شود، مقاومت رابرهاي مقاوم مشهور، بالاتر است. البته پيشرفت‌هاي اخير باعث توليد مواد TPE با مقاومت شيميايي (در برابر روغن) و حرارتي بالا شده است. اين بهبود با افزايش قيمت مواد اوليه فلوئور و الاستومرها، سيليكون‌ها و آكريليك‌ها همراه است. جدول 2: عيوب TPEها نكته مهم، مانايي فشاري بسيار بالاي TPEهاست. سختي و مانايي فشاري، دو عامل كليدي براي دستيابي به خواص عملكردي رابرها هستند. شكل 3 مقايسه بين سختي و متنايي فشاري بين TPEها، PVC و رابرها را نشان مي‌دهد. شكل 3: مقايسه سختي و متنايي فشاري TPEها، PVC و رابرها البته بنا به اظهار سازندگان مواد اوليه، ايراد مقاومت حرارتي/شيميايي و مانايي فشاري در گريدهاي جديد توليد شده مرتفع شده است. (جدول 3). يكي از موانع جايگزيني TPE در بسياري از كاربردهاي رابرها، ضعيف‌تر بودن خاصيت مقاومت حرارتي/ آسودگي تنش اعمالي آن است. جدول 3: مزاياي توليد با TPE رويكرد جهاني و اهميت موضوع در ساخت و توليد قطعات خودرو بديهي است كه مي‌بايستي از موادي استفاده كرد كه از توانايي دستيابي به الزامات مواد و فرايند صنعت خودرو، برخوردار باشند. در جدول 4، الزامات مواد و فرايند در صنعت خودرو ارائه شده و مثال‌هاي عملي از چگونگي دستيابي و بهبود اين خواص با استفاده از قطعات توليدي با گونه‌هاي مختلف TPE مطرح شده است. مشاهده مي‌كنيد كه با استفاده از مواد TPE امكان دستيابي و بهبود تمامي خواص نظير كاهش وزن، كاهش هزينه‌هاي توليدي، نرمي سطح، براقيت پايين، مقاومت روغني، بدون بو بودن و ديگر مواد، وجود دارد. جدول 4: قابليت مواد ترموپلاستيك الاستومر در دستيابي به الزامات مواد و فرايند در صنعت خودرو TPEهاي مورد استفاده در بسياري از قطعات، از قابليت رقابت با ترموست الاستومرها برخوردارند. بويژه در تمامي نوارهاي آب‌بندي شامل نوارهاي: دور در، دور درب صندوق، زير درب‌موتور، آبگيرهاي داخلي، آبگيرهاي خارجي، آب‌بندي دور كلاف شيشه درب‌هاي جانبي، آب‌بندي دور شيشه جلو و عقب و encapهاي دور شيشه. تمامي اين نوارها، عموماً با لاستيك EPDM توليد مي‌شوند. در تصاوير مختلف شكل 4، نمونه‌هايي از نوارهاي آب‌بندي توليدي با TPEها ارائه شده است. شكل 4: نمونه نوارهاي آب‌بندي توليد شده با TPE TPEها از قابليت توليد ديگر قطعات پليمري نظير درپوش‌ها، ضربه‌گيرها، كوركن‌ها و انواع بست‌ها برخوردارند. (جدول 5) جدول 5: استفاده از TPE در توليد درپوش‌ها و كوركن هاچ در جداول 6و7، مزاياي توليد اين قطعات با TPE بيان شده است. جدول 6: مزاياي توليد درپوش‌ها و كوركن‌ها با TPE جدول 7: مزاياي توليد ضربه‌گيرها با استفاده از TPE در تصاوير مختلف شكل 5: نمونه‌هاي درپوش‌ها، كوركن‌ها و ضربه‌گيرهاي توليدشده با TPE نشان داده شده است. شكل 5: درپوش‌ها، كوركن‌ها و ضربه‌گيرهاي توليدي با TPE شكل شماتيك 6، قطعاتي را نشان مي‌دهد كه در توليد آنها،‌ رقابت TPE با الاستومرها آشكار است. شكل 6: قطعات خودروي توليدي با TPE در رقابت با الاستومرها فناوري‌هايي كه از مواد ترموپلاستيك الاستومر استفاده مي‌كنند، جايگاه خود را در صنعت خودرو كاملاً مستحكم كرده‌اند. در جدول 8، مثال‌هايي از فناوري‌هاي بهره‌گيرنده از مواد TPE در صنعت خودروي ژاپن و اروپا ارائه شده است. جدول 8: مثال‌هايي از تكنولوژي‌هاي ژاپني و اروپايي در به‌كارگيري TPE در صنعت خودرو براي آشنايي بيشتر با ميران رقابت‌پذيري PVC و TPE با رابرها در ساخت قطعات خودرويي، در جدول 9 امكان توليد قطعات مختلف با گونه‌هاي مختلف TPE و PVC ارائه شده است. مشاهده مي‌شود كه TPE به دليل نسبت بالاتر كارايي به قيمت،‌ داراي پتانسيل بالاتري در رقابت با رابرها نسبت به PVC است. در جدول 10، مقدار رابر مصرفي در هر قطعه به ازاي هر خودرو كه مي‌تواند معياري از بازار هدف براي TPE براي نوارهاي آب‌بندي دور درب‌ها و شيشه‌ها متصور است. نكته مهم اين است كه در محدوده نوارهاي دور درب، گونه مصرفي TPE ترموپلاستيك الاستومراليفينيك بوده، اما در نوارهاي دور شيشه، ترموپلاستيك الاستومر اليفينيك و SEBSها با هم رقابت دارند. جدول 9: رقابت TPE و PVC با رابرها در توليد قطعات خودرويي جدول 10: ميزان مصرف رابر در قطعات مختلف نمودار 4، نمايانگر ميزان رشد مصرف TPE در توليد نوارهاي آب‌بندي دور كلاف شيشه بين سال‌هاي 1999 تا 2005 در ژاپن، اروپا و امريكاست. نكته قابل توجه، توسعه وسيع اين مواد در ژاپن است. در سال 2005، كشورهاي اروپايي و امريكايي نيز در توليد اين قطعه به TPE روي آورده‌اند. نمودار 4: رشد كاربرد TPE در توليد نوار دور كلاف شيشه در قطعات داخلي نظيركيسه‌هاي هوا و رودري‌ها (5كيلوگرم به ازاي هر خودرو) گرچه از رابر استفاده نمي‌شود، اما TPE از قابليت رقابت با آن برخوردار است (نمودارهاي 5 تا 7). رشد سالانه تقاضاي جهاني براي مصرف TPEها، 2/6 درصد است. تا پايان سال 2007، صرفاً تقاضاي شركت‌هاي امريكايي درخصوص اين مواد، حدود 5/1ميليارد پوند وزني يا 5/1ميليارد دلار خواهد رسيد. پيش‌بيني مي‌شود كه اين تقاضا تا پايان سال 2009 به 1/3 ميليون تن متريك نيز برسد. وسائط نقليه موتوري در سطح جهان، همچنان بزرگترين بازار مصرف TPEها را به خود اختصاص داده است. در امريكا، نزديك به 30 درصد از كل مصرف TPEها، در حيطه صنعت خودرو صورت مي‌پذيرد. البته گفتني است كه TPEها كاربردهاي وسيعي نيز در ديگر صنايع نظير صنايع الكترونيك، لوازم خانگي، آب‌بند‌ها و درزگيرهاي صنعتي، لوازم ورزشي، لوازم پزشكي، صنايع بسته‌بندي مواد غذايي و نوشيدني دارد. با توجه به مصرف بالاي رابرها و بويژه EPDM در خودروهاي توليدي شركت ايران خودرو و نيز با توجه به مزاياي نسبي توليد قطعات و بويژه نوارهاي آب‌بندي با TPE نسبت به EPDM، تحقيق و مطالعات دقيق‌تر در زمينه جايگزيني EPDM با TPE، مي‌تواند يكي از راه‌حل‌هاي افزايش كيفيت قطعات و كاهش قيمت‌ها باشد. منابع: 1. Global trends in olefinc TPEs by Robert Eller associate, Inc. 2. wikipedia web site. 3. GLS corporation web site. 4. Innovation in glazing and sealing systems by THE ITB GROUP, LTD. 5.World Thermoplastic Elastomers Industry Report. By Freedonia Group Inc.
×
×
  • جدید...