رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'حرارت'.

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
    • دفتر مدیریت انجمن نواندیشان
    • کارگروه های تخصصی نواندیشان
    • فروشگاه نواندیشان
  • فنی و مهندسی
    • مهندسی برق
    • مهندسی مکانیک
    • مهندسی کامپیوتر
    • مهندسی معماری
    • مهندسی شهرسازی
    • مهندسی کشاورزی
    • مهندسی محیط زیست
    • مهندسی صنایع
    • مهندسی عمران
    • مهندسی شیمی
    • مهندسی فناوری اطلاعات و IT
    • مهندسی منابع طبيعي
    • سایر رشته های فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی
  • دانستنی های بیمه ای موضوع ها
  • Oxymoronic فلسفه و هنر

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

  1. خودروهای هیبریدی معمولا تلفیقی از موتور احتراق داخلی خودروهای متداول با باتری و موتور الکتریکی یک خودرو الکتریکی هستند . این تلفیق انتشارات ( گازهای خوروجی ) اندک همراه با توان ، برد عملیاتی و سوخت مصرفی مناسب خودروهای معمول ( گازوئسل وبنزین) را عرضه می کند و این خودروها هرگز نیاز به اتصال به برق ندارند.این انعطاف پذیری ذاتی خودروهای هیبریدی آنها را برای ناوگان حمل و نقل ومصرف شخصی مناسب کرده است خودرو هاي هيبريدي مي توانند سرعت و مسافت بيشتري نسبت به انواعي كه موتورهاي درون ساز دارند داشته باشند، با اين حسن بزرگ كه شارژباتري هايش هرگز تمام نمي شود بازدهي اين خودروهابسيار بالا بوده و ميزان توليد آلودگي شان كاهش يافته است. به همين دليل بسياري از كارخانه ها از سال 1999 توليد خودروهاي هيبريدي را به صورت انبوه آغاز كرده اند. خودروهای هيبريدی (Hybrid Vehicles) خودروهای هیبریدی معمولا تلفیقی از موتور احتراق داخلی خودروهای متداول با باتری و موتور الکتریکی یک خودرو الکتریکی هستند . این تلفیق انتشارات ( گازهای خوروجی ) اندک همراه با توان ، برد عملیاتی و سوخت مصرفی مناسب خودروهای معمول ( گازوئسل وبنزین) را عرضه می کند و این خودروها هرگز نیاز به اتصال به برق ندارند.این انعطاف پذیری ذاتی خودروهای هیبریدی آنها را برای ناوگان حمل و نقل ومصرف شخصی مناسب کرده است خودرو هاي هيبريدي مي توانند سرعت و مسافت بيشتري نسبت به انواعي كه موتورهاي درون ساز دارند داشته باشند، با اين حسن بزرگ كه شارژباتري هايش هرگز تمام نمي شود بازدهي اين خودروهابسيار بالا بوده و ميزان توليد آلودگي شان كاهش يافته است. به همين دليل بسياري از كارخانه ها از سال 1999 توليد خودروهاي هيبريدي را به صورت انبوه آغاز كرده اند. تاريخچه خودروي هيبريدی يك مهندس آمريكائي به نام H.Piper در 23 نوامبر 1905 يك ماشين هيبريدي ساخت كه قادر بود در طي 10 ثانيه تا 25 مايل شتاب بگيرد. موتور اين خودرو تركيبی از موتور بنزيني و موتور الكتريكي بود كه امروزه به عنوان موتور هيبريدي شناخته مي*شود. Piper در سه سال و نيم بعد، اختراع خود را ثبت نمود؛ اما پيشرفت سريع موتورهای احتراق داخلی با قدرت و گشتاور بالا در آن دوره، همچنين قابليت استارت بدون هندل آنها و از همه مهمتر پايين بودن قيمت سوختهای فسيلی و مطرح نبودن آلودگی محيط زيست، سبب عدم توجه به اين نوع خودروها شد. در پي بحرانهاي نفتي سالهاي 1970 دوباره اين خودروها مورد توجه قرار گرفتند ولي تا سال 1990 که كار اصولي با مشاركت PNGV (Partnership for a New Generation Vehicle) در آمريكا آغاز گرديد، این خودروها به طور جدی پيگيری نشدند. امروزه خودروهاي هيبريدي مورد توجه كمپانيهاي بزرگ جهان قرار گرفته اند كه از آن جمله مي*توان به شركتهايي مانند: تويوتا، هندا، ميتسوبيشي، فورد، فيات، جنرال موتورز، دايملر كرايسلر، نيسان و پژو و ... اشاره نمود. توفيق اين محصولات به حدي چشمگير بوده كه از دسامبر سال 1997 تا ابتداي سال 2000 بيش از چهل هزار محصول پريوس كمپاني تويوتا به فروش رسيده است. خودروهای هیبریدی به وسیله دو منبع انرژی – یک واحد تبدیل انرژی (همچون یک موتور احتراق یا پیل سوختی) و یک وسیله ذخیره انرژی (هم چون باتری هل یا فرا خازن ها)- توان می گیرند . واحد تبدیل انرژی امکان قدرت گرفتن از بنزین ، متانول ، گاز طبیعی فشرده ، هیدروژن یا سوخت های جانشین دیگر را دارد. خودروهای هیبریدی این پتانسیل را دارنئ که 2 تا 3 برابر راندمان بالاتری نسبت به خودروهای متداول داشته باشند. خودروهای هیبریدی می توانند دارای طراحی موازی طراحی سری یا ترکیبی از هر دو باشند. در یک طراحی موازی ، واحد تبدیل انرژی و سیستم محرکه الکتریکی مستقیما به چرخ های خودرو مرتبط شده اند. موتور اصلی برای رانندگی در بزرگراه ها استفاده می شود ، موتور الکتریکی توان اضافی را هنگام پیمودن سر بالایی ها ، شتاب گرفتن و مواقع دیگر که توان بالای خودرو نیاز باشد فراهم می آورد.در یک طراحی سری ، موتور اصلی به یک ژنراتور تولید کننده الکترسیته مرتبط است . الکتریسیته باتری هایی را شارژ می کند که موتور الکتریکی را که به چرخ ها توان می دهد به کار می اندازد. بر خلاف خودروهای الکتریکی ، خودروهای هیبریدی نیازی به اتصال به برق شهر ندارند. در عوض آنها با ترمز واکنشی یا ژنراتور شارژ می شوند. اجزاء خودروهای هیبریدی خودروهای هیبریدی یک ترکیب بهینه از اجزای مختلف هستند.یک نمونه خودرو هیبریدی را دیاگرام بالا می بینید. کنترل کننده ها / موتور کشنده الکتریکی سیستم های ذخیره کننده انرژی الکتریکی ، همچون باتری ها و فراخازن ها واحد توان هیبریدی همچون موتور احتراق جرقه ای ، موتورهای انژکتور مستقیم احتراق تراکمی (دیزل) توربین های گازی و پیل های سوختی سیستم های سوخت رسانی برای واحد توان هیبریدی جعبه دنده (گیربکس) برای کمک به گازهای خروجی و بهبود کارایی های خودرو ، اجزاء وسیستم های زیر بواسطه تحقیق و توسعه اصلاح شدند : سیستم های کنترل گازهای خارجی مدیریت انرژی وکنترل سیستم ها مدیریت حرارتی اجزاء وزن پایین وایرو دینامیک بدنه / شاسی مقاومت غلطشی پایین (شامل طراحی بدنه وتایرها ) کاهش بار لوازم اضافی کنترل کننده ها / موتورهای هیبریدی موتورهای کارگران پر کار سیستمهای راننده خودروهای هیبریدی هستند ، یک موتور کشنده الکتریکی ، انرژی الکتریکی واحد ذخیره انرژی را به انرژی مکانیکی که چرخ های خودرو را به حرکت در می آورد.بر خلاف خودروهای معمول که برای بدست آوردن گشتاور کامل ، موتور باید سرعت بگیرد موتور الکتریکی گشتاور کامل رادر سرعت های پایین نیز فراهم می کند. همین مشخصه شتاب غیر خطی عالی به خودرو می دهد . مشخصه های مهم موتور خودروی هیبریدی شامل کنترل خوب رانندگی با خطای مجاز صدای کم وراندمان بالا می باشد. مشخصه های دیگر شامل انعطاف پذیری مربوط به نوسان ولتاژ و البته قابل قبول بودن قیمت تولید انبوه می شود. تکنولوژی موتور جلو برنده برای کاربردهای خودروی هیبریدی شامل آهنربای دائمی ، القای جریان متناوب و موتورهای مقاومت مغناطیسی متغییر می باشد. باتری خودرو هیبریدی باتری ها یک از اجزای ضروری خودروخهای هیبریدی هستند . گر چه تعداد کمی از تولیدات خودروهای هیبریدی با باتریهای پیشرفته در بازار عرضه شده اند اما هیچ کدام از باتری های رایج یک ترکیب قابل قبول اقتصادی از توان ، راندمان انرژی و طول عمر را برای حجم بالای تولید خودرو ارائه نداده اند. ویژگیهای مطلوب باتریهای با توان بالا برای کاربردهای خودروهای هیبریدی شامل این موارد است : پیک و توان مخصوص تکانه بالا ، انرژی مخصوص بالای توان تکانه ، پذیرش شارژ بالا برای بیشینه کردن بهره بری ترمز واکنشی و طول عمر طولانی . روش ها و طراحی های در حال توسعه برای هماهنگی مجموعه به صورت الکتریکی و حرارتی ، روشهای دقیق در حال پیشرفت برای تعیین وضع شارژ باتری ، باتریهای بادوام در حال پیشرفت و قابلیت بازاریابی ، چالش های تکنیکی دیگر هستند.
  2. یکی از وسایل پرکاربرد در ساخت انواع پروژه ها از جمله پروژه های الکترونیکی هویه می باشد. هویه یک ابزار دستی می باشد و وظیفه اصلی آن لحیم کاری می باشد. هویه به قلع حرارت می دهد تا ذوب شده و بین دو قطعه ای که قرار است به هم لحیم شوند جاری گردد. هویه ها از یک سر فلزی و یک دسته عایق تشکیل می شوند که وظیفه سر فلزی، تولید حرارت جهت ذوب کردن قلع می باشد. در هویه ها حرارت معمولاً از جریان الکتریسیته تولید می شود. جریان الکتریسیته برق یا باطری از موادی عبور می کند که به عبور جریان الکتریسیته مقاومت دارند و این مقاومت باعث تولید حرارت می گردد. این هویه ها به هویه های الکتریکی یا برقی معروف می باشند. منبع دیگر حرارت برای هویه ها گاز می باشد. سوختن گاز مناسب در هویه می تواند حرارت نوک هویه را تامین نماید. گاز مورد نیاز هویه نیز می تواند از کپسول یا لوله گاز تامین گردد. به این نوع هویه ها، هویه های گازی گفته می شود. رایج ترین نوع هویه، هویه الکتریکی می باشد که شما نیز حتماً تا به حال با آن سر و کار داشته اید. هویه های الکتریکی نیز خود انواع و توان های متفاوتی دارند. یکی از رایج ترین انواع هویه های الکتریکی هویه های قلمی می باشند. این هویه ها به شکل زیر می باشند و در توان های مختلفی (حدود 15 الی 60 وات) موجود می باشند. این هویه ها برای لحیم کاری قطعات ظریف الکترونیکی بسیار مناسب می باشند. توان هویه قلمی نیز باید با توجه به نوع سیم لحیم و مدار مربوطه انتخاب گردد. البته برخی از این هویه ها قابلیت تنظیم توان و دما را دارند. این هویه ها را در زمان استفاده باید در پایه مخصوص قرار دارد تا به میز کار آسیب نرسانند. یک نمونه پایه این هویه ها را در شکل زیر مشاهده می کنید: وک این هویه ها پس از مدتی کار کردن کثیف می شود و جرم می گیرد و لذا میزان انتقال حرارت آن کاهش یافته و کار آیی آن پایین می آید. در این حالت باید نوک هویه را توسط اسفنج نسوزو یا سیم ظرف شویی تمیز نمود تا مجدداً براق گردد. البته سر این هویه ها قابل تعویض نیز می باشند. نوع دیگر هویه های الکتریکی، هویه های تفنگی می باشند. این هویه ها توان بالاتری نسبت به هویه های قلمی دارند (حدود 100 وات و بیشتر)، نوک آن ها پهن تر می باشد و برای لحیم کاری پایه ها و قطعات درشت تر به کار می روند. ظاهر این هویه ها به شکل زیر می باشد. برای تهیه هویه باید به فروشگاه های لوازم الکترونیکی مراجعه نمایید. مرکز فروش لوازم الکترونیکی در تهران، خیابان جمهوری، اطراف پل حافظ می باشد که در شکل زیر نشان داده شده است. مرکز یادگیری سایت تبیان
  3. EN-EZEL

    همه چیز در مورد مبدل های حرارتی

    معرفي تكنولوژي بهبود انتقال حرارت در مبدل*هاي پوسته - لوله*اي توجه به محدوديت سوخت*هاي فسيلي در دنيا موجب شده است كه امروزه موضوع بهينه*سازي مصرف انرژي در واحدهاي فرآيندي، بيش از پيش مورد توجه قرار گيرد. يكي از تكنيك*هاي بهينه*سازي مصرف انرژي، تكنيك HTE است كه در زير معرفي شده*است. نويسندة متن ارسالي زير، در پايان معرفي تكنولوژي، به اقدامات انجام شده در پژوهشگاه صنعت نفت در راستاي دستيابي به اين تكنولوژي و موفقيت*هاي به*دست آمده اشاره كرده*است. معرفي تكنولوژي HTE در فرآيندهاي شيميايي، مهمترين بخشي كه مستقيماً با مصرف انرژي ارتباط مي*يابد، مبدل*هاي حرارتي مي*باشند. تاكنون همواره تلاش شده است تا مبدل*هايي طراحي گردند كه ضمن داشتن حداكثر بازدهي، در كاركردهاي بلند*مدت، كمترين مشكلات عملياتي را داشته باشند. اصولاً مبدل*هاي حرارتي، به*خصوص از نوع پوسته- لوله*اي (Shell-and-Tube)، داراي دو مشكل عملكرد پايين حرارتي (Thermal Deficiency) و جرم*گرفتگي داخل لوله*ها (Fouling)، به*خصوص در هنگام كاركرد با سيالات كثيف يا حساس به دما مي*باشند. يكي از روش*هاي كاربردي و موثر در بهبود انتقال حرارت و كاهش جرم گرفتگي، استفاده از وسايل افزايندة انتقال حرارت (Tabulators) است. اين وسايل به آساني در داخل لوله*هاي مبدل*هاي پوسته-*لوله*اي نصب مي شوند و در زمان توقف واحدها (Overhaul)، به*راحتي قابل بيرون كشيدن و تميز كاري و نصب مجدد مي*باشند. اين روش كاربردي، امروزه به عنوان تكنولوژي HTE يا Heat Transfer Enhancement شناخته شده است كه تحت ليسانس شركت*هاي مختلف، بيش از يك دهه براي به*كارگيري در صنايع مختلف نفت و گاز و پتروشيمي و حتي نيروگاه*ها توصيه و تبليغ مي*گردد. شايان ذكر است كه در حال حاضر، تنها در آمريكا بيش از 50 پالايشگاه و 6 واحد پتروشيميايي از مزاياي اين تكنولوژي بهره برده*اند. البته استفاده از اين تكنولوژي محدود به آمريكا نبوده و در بسياري از پالايشگاه*ها و مراكز پتروشيمي كشورهاي اروپايي و حتي در آسيا (به*طور مشخص تايلند، مالزي و ژاپن) نيز اين تكنولوژي به*كار گرفته شده است. اصول و مباني تكنولوژي HTE اساساً روش*هاي متعددي براي افزايش بازدهي مبدل*هاي حرارتي ارائه شده است كه به دليل هزينه كمتر نسبت به روش*هاي ديگر و عدم استفاده از ساير منابع انرژي نظير برق، جنبه*هاي اجرايي استفاده از وسايل افزاينده انتقال حرارت براي مهندسان در صنايع، بسيار پرجاذبه*تر تشخيص داده شده است. اين وسايل كه با اشكال هندسي خاصي طراحي مي*شوند، درون لوله*هاي مبدل قرار داده مي*شوند. ايجاد سرعت*هاي چرخشي در جريان سيال و افزايش اختلاط به*خصوص در نزديكي ديواره*هاي داخلي لوله*هاي مبدل، نهايتاً سبب مي*گردد كه از سرعت ته*نشيني ذرات كاسته شده و از تشكيل لايه مرزي نيز جلوگيري گردد. فرصت نيافتن سيال براي تشكيل لاية مرزي كه خود از مقاومت*هاي مهم در برابر انتقال حرارت محسوب مي*شود، از دلايل عمدة افزايش نرخ انتقال حرارت ميان سيال درون لوله و پوسته مي*باشد. به*علاوه، افزايش سرعت شعاعي و محوري در جريان سيال داخل لوله باعث نوعي يكنواختي در توزيع دما در طول لوله و در هر مقطع از آن مي*گردد. لذا در برخي از مكانيزم*هاي تشكيل جرم گرفتگي درون لوله*هاي مبدل*ها، نظير كك زدن (Cocking)، كه دليل اصلي آن به*وجود آمدن نقاط داغ موضعي در سطح لوله (Hot Spot) است، استفاده از اين وسايل باعث جلوگيري از اين پديده شده و نهايتاً سبب بهبود انتقال حرارت در طول لوله مي*گردد. وسايل افزايندة انتقال حرارت در انواع مختلفي طراحي مي*شوند كه هر يك بسته به ساختمان طراحي خود، با مكانيزم خاصي سبب افزايش انتقال حرارت و كاهش همزمان جرم*گرفتگي در لوله*ها مي|*گردند. اين وسايل نه*تنها در لوله*هاي مبدل*هاي پوسته-*لوله*اي بلكه در كولرهاي هوايي، جوش*آورها، چگالنده*ها، و كوره*هاي احتراقي نيز به طور عملي استفاده مي*شوند. نكته قابل توجه اين است كه بيشتر سيالاتي كه مورد سرمايش و گرمايش قرار مي*گيرند، داراي ويسكوزيتة نسبتاً بالايي مي*باشند، يا در مواردي كه سيالات كثيف (Foul ant) بوده، ضريب انتقال حرارت اين سيالات در جريان لوله نسبتاً پايين مي باشد. لذا در چنين مبدل*هايي، انتقال حرارت براي طرف لولة كنترل كنندة سرعت انتقال حرارت مي*باشد. بنابراين استفاده از دستگاه*هاي افزايندة انتقال حرارت، موجب بهبود و مزيتي براي رفع هر دو نقيصة مزبور در مبدل*هاي پوسته-*لوله*اي خواهد بود. موارد به*كارگيري تكنيك HTE اصولاً به*كارگيري و مزاياي ناشي از به*كار بردن اين وسايل در لوله*هاي مبدل*هاي پوسته- لوله*اي در دو زمينة زير قابل توجه مهندسان بوده است: 1- در بهبود كاركرد مبدل*هاي حرارتي موجود، مزاياي عمده*اي در فرآيند مربوط به نصب اين وسايل در درون لوله*ها و سپس كاهش تعداد گذر*هاي طرف لوله به*صورت زير حاصل مي*گردد: - كاهش رسوب گرفتگي در لوله*ها - رساندن درجة حرارت*هاي سيالات خروجي از طرف لوله و طرف پوسته به دماهاي مورد نظر در طراحي (Spec.)و حتي فراتر از آن - افزايش ظرفيت واحدها (Revamping) با بالا بردن دبي جريانها در مبدل*ها، به*خصوص وقتي كه مبدل*ها، دستگاه*هاي حرارتي گلوگاهي (Bottleneck) فرآيند محسوب مي*شوند. - افزايش بار حرارتي دستگاه*هاي تبادل حرارتي و اصلاح شبكة مبدل*هاي حرارتي (Retrofitting) و نهايتاً كاهش مصرف آب و بخار (Utilities) در يك فرآيند. 2- مزاياي ناشي از به*كارگيري اين تكنولوژي در طراحي اولية مبدل*ها (Grassroots Design) - كاهش سطح انتقال حرارت مورد نياز به مقدار بسيار قابل ملاحظه - كاهش تعداد پوسته*ها و گذرهاي طرف لولة مبدل و ساده*تر شدن ساختمان مبدل در طراحي - كاهش نيروي محركة دمايي LMTD كه به*طور مثال در مبدل*هاي بخاري(Steam heaters) ، نياز به تامين بخار فشار بالا را منتفي خواهد نمود. نمونه هاي عملي از به*كارگيري اين تكنولوژي در صنايع (Case Studies) در ذيل، چهار مثال مجزا جهت نشان دادن مزاياي به*كارگيري اين تكنيك در صنايع مختلف نفت و گاز پتروشيمي آورده شده است. به*طوري*كه ملاحظه مي*شود، استفاده از تكنولوژي HTE در حل مشكلات حرارتي و عملياتي، نظير جرم گرفتگي مبدل*ها كاملاً موفق بوده است. مثال اول) پالايشگاه نفت گرنبي موس در اسكاتلند شركت نفت انگلستان (B.P) امكان رسوب*گرفتگي ناشي از كريستالي شدن تركيبات هيدروكربوري سنگين (واكس) را با طراحي يك كولر هوايي مناسب و استفاده از اين تكنولوژي حذف نموده است. شرح مثال 1 مثال دوم) پالايشگاه نفت لينجن در آلمان با تلفيق اين تكنولوژي و با استفاده از بافل*هاي حلزوني نه تنها از ميزان رسوب گرفتگي در لوله*هاي مبدل كاسته شده، بلكه طراحي با اين تلفيق، منجر به داشتن تعداد كمتري از پوسته*هاي مبدل شده است. شرح مثال 2 مثال سوم) پالايشگاه اونتاريا در كانادا استفاده از اين تكنولوژي منجر به داشتن مبدلي فشرده*تر و بدون نيازمندي به نگهداري و بازرسي در عمليات كراكينگ كاتاليستي گازوييل سنگين (HCGO) شده است. شرح مثال 3 مثال چهارم) تاسيسات ذخاير گاز لنچات در بلژيك استفاده از اين تكنولوژي منجر به بهبود كاركرد مبدل مياني تنها با يك پوسته در عمليات آبگيري از گاز شده است. اقدامات انجام شده در پژوهشگاه صنعت نفت پژوهشكدة گاز پژوهشگاه صنعت نفت در راستاي ايجاد و توسعة دانش فني اين تكنولوژي در كشور قدم*هاي اساسي برداشته كه نهايتاً موجب ثبت اين تكنولوژي در ايران (به شماره پروژه*هاي 71010108 و 71010110 و شماره ثبت 26156 مورخه 16/10/78) شده است. محورهاي اساسي در مجموع فعاليت*هاي انجام شده به قرار زير است: 1) اراية سمينار و كارگاه*هاي آموزشي به منظور آشنايي مهندسان و كارشناسان مختلف و علاقه*مند به اين تكنولوژي, سمينارها و كارگاه*هاي مختلفي در سطح صنايع نفت و گاز و پتروشيمي برگزار شده است. 2) ساخت وسائل افزاينده انتقال حرارت با تلاش و پيگيري*هاي انجام شده تكنيك ساخت و پارامترهاي توليدي يكي از مهمترين انواع وسائل افزايندة انتقال حرارت بدست آمده است. در حال حاضر توانايي ساخت اين وسائل در ابعاد مختلف و با فشردگي*هاي متفاوت و براي هر دامنه**اي از نياز فراهم آمده است. 3) تعيين مشخصة عملكرد هيدروليكي- حرارتي وسائل مذكور پس از ساخت اين وسائل به منظور برآورد مشخصات عملكردي وسائل افزايندة انتقال حرارت يك سيستم آزمايشگاهي (Test Rig) طراحي و ساخته شد. بدين ترتيب اطلاعات دقيق عملياتي براي هر وسيله قابل حصول خواهد بود. 4) تهية نرم*افزار RIPI-HEX جهت تعيين پتانسيل بكارگيري اين تكنيك در مبدل*هاي پوسته- لوله*اي و براي شرايط طراحي (Design) و عملكردي (Rating) نرم*افزاري تهيه و تدوين شد. با كمك اين نرم*افزار امكان بررسي هر يك از حالات توصيف*شده در شرايطي كه افزايش راندمان حرارتي مبدل مدنظر باشد، قابل بررسي خواهد بود. در حال حاضر پژوهشگاه صنعت نفت امكان پيش بيني و تخمين ميزان پتانسيل سودمندي ناشي از بكارگيري اين تكنيك را براي مبدل*هاي معرفي*شده از سوي صنايع مختلف را دارا مي*باشد. منابع مطالعاتي بيشتر: 1-M.R.Jafari Nasr, G.T. Polley, “An Algorithm for Cost Comparison of Optimized Shell-and-Tube Heat Exchangers with Tube Inserts and Plain Tubes,” Chem.Eng.Technol. 23,(3), 2000. 2-G.T.Polley, M.R.Jafari Nasr and A.Terranova, “Determination and Applications of the Benefits of Heat Transfer Enhancement,” IChemE, Vol.72, Part A, pp.616-620, Sept., 1994. 3-M.R. Jafari Nasr, A.T.Zoghi,“Performance Improvement of Tehran Refinery Pre-heater Exchangers Using Heat Transfer Enhancement”, No.41, Summer 2001. 4-M.R.Jafari Nasr, G.T. Polley and A.T. Zoghi , “Performance Evaluation of Heat Transfer Enhancement (H.T.E. Technology),” 14th International Chemical and Process Engineering Congress, CHISA, Parha, Czech Republic, 27-3 Aug. , 2000
  4. انواع کوره ها كوره هاي ذوب فلزات -به طور كلي كوره هاي زير در ريخته گري وذوب فلزات مورد استفاده قرار مي گيرند، - كوره هاي بوته اي يا زميني از نوع ثابت و گردان . - كوره هاي تشعشعي يا روبادده از نوع ثابت و دوّار -كوره هاي قوس الكتريكي از نوع مستقيم و غير مستقيم - كوره هاي القائي با فركانس كم وفركانس بالا ، همچنين هسته دار (كانالي ) و بدون هسته - كوره هاي زيمنس – مارتين - كوره هاي كوپل كوره هاي زميني يا بوته اي - كوره هاي بوته اي يكي از متداولترين كوره هايي است كه از دير باز در صنعت ريخته گري سنتي رواج داشته است و به علت سادگي ساخت ، ارزاني قيمت و سهولت شرايط كار آن تا به امروز در كليه ريخته گريهاي سنتي به عنوان يكي از كوره هاي اصلي ذوب فلزات و در كارخانه هاي متوسط و بزرگ به عنوان كوره هاي كمكي ارزش خود را حفظ كرده است ، ساختمان كوره به سه قسمت تقسيم مي شود كه عبارتند از : -بدنه فلزي و صفحه زير كوره - قسمتهاي نسوز كوره ( بدنه نسوز ، كف كوره ، محل ورود شعله يا آجر فرم فارسونكا ، زير بوته اي ، و درب كوره ) -وسايل ايجاد احتراق در كوره ( شامل ونتيلاتور يا دمنده هوا ، فارسونكا يا مشعل ) كوره هاي بوته اي به سه نوع a ) بوته ثابت b ) بوته متحرك c ) بوته ثابت و كوره گردان ساخته و مورد استفاده ريخته گران قرار ميگيرد . -قسمتهاي مختلف كوره زميني عبارتند از :الف) بدنه فلزي ب) صفحه فلزي كف كوره ج) ديواره نسوز د)درب كوره ه) دستگاه دمنده هوا يا ونتيلاتور و) فارسونگاه يا مشعل ز) زير بوته اي -براي ساخت يك كوره زميني نياز به وسايل و تجهيزات پيچيده اي نيست و با اطلاعاتي كه هنرجويان و دانش آموزان اين رشته به دست مي آورند ميتوانند براحتي اقدام به ساخت آن نمايند. بطور مثال بدنه فلزي كوره ورقي است به ضخامت يك سانتيمتر كه به صورت لوله اي باقطر حدود 100سانتيمتر و ارتفاع 100سانتيمتر درآمده است، بعضي از ابعاد ديگر كوره زميني به طور تقريب در ذيل آمده است . قطر داخلي ، 360Cm ارتفاع زير بوته اي ، 20Cm قطر زير بوته اي ، 20Cm ضخامت جداره نسوز 15- 30 Cm درب كوره :از آجرهاي نسوز فرم به قطر ، 55Cm ضخامت لايه دوم جداره نسوز : 15 – 30 Cm ونتيلاتور: سه فاز و حداقل توان يك اسب بخار. كوره هاي تشعشعي -كوره هاي تشعشعي (شعله اي –روباده ) به كوره هائي گفته ميشود كه بين محصول احتراق و مواد شارژ تماس مستقيم برقرار مي باشد و حرارت از سه طريق ، جابجايي ، هدايت و تشعشع به مذاب مي رسد . هوا و سوخت توسط مشعل يا مشعلهايي ازيك طرف كوره به داخل محفظه احتراق (كوره) تزريق ميگردد ودر اثر سوختن حرارت لازم را براي ذوب شارژ فراهم مي كند. سوخت اين كوره ها ميتواند مايع، گاز و حتي جامد باشد. ظرفيت اين كوره ها بين 15 تا 75 تن متغير است امّا انواع كوچك آن حتي كمتر از 500Kg نيز ساخته شده اند . از اين نوع كوره ها به عنوان نگهدارنده نيز استفاده ميشود كه ظرفيت آنها تا 90 تن نيز ميرسد. كوره دوّار -ساخت اين كوره ها براي اولين بار در سال 1930 آغاز و چند سالذ بعد ، تعدادي از اين كوره ها در كارخانجات صنعتي اروپا شروع به كار كرد. كوره هاي دوّار از نوع غير مداوم بوده كه مذاب گيري در آنها با شارژ سرد آغاز مي شود ، همچنين ميتوان براي بالا بردن درجه حرارت مذاب تهيه شده از كوره هاي ديگر مانند كوپل استفاده نمود. ظرفيت اين كوره ها از 250 Kg تا 15 تن ميباشد وبيشتر در واحدهاي چدن ريزي ماليبل و خاكستري و حتي به مقدار كمتري در تهيه چدنهاي آلياژي و نشكن مورد استفاده قرار ميگيرد. -كوره هاي دوّار از قسمتها و تجهيزات زير تشكيل شده اند. -ونتي لاتور 2-116-تابلوي فرمان 3-116-كانال احتراق 4-116-لايه نسوز كوره -بدنه اصلي كوره 6-116-مجراي خروج مذاب 7-116-رينگ جهت چرخش كوره - كانال شارژ كوره 9-116-مكانيزم گرم كننده هواي دم 10-116- مشعل -الكتروموتور و جعبه دنده 12-116-شعله گير 13-116-لايه نسوز كوره -زانوي هدايت شعله 15-116-پايه فولادي زانو 16-116-شاسي كوره -ابعاد و اندازه ، قسمتهاي مختلف كوره دوّار با تغيير ظرفيت آن ، تغيير ميكند ، مورد فوق يعني به دست آوردن ابعاد و اندازه قسمتهاي مختلف كوره دوّار مي تواند موضوع خوبي براي تحقيق دانش آموزان باشد. طرز كار كوره دوّار -براي روشن كردن كوره ابتدا شعله افروخته اي را در كنار فارسونگا قرار داده شير سوخت را باز كرده ونتيلاتور را روشن ميكنيم ،سوخت مشتعل شده و شعله وارد كوره مي گردد. بعد از تنظيم شعله كوره پيش گرم مي شود ، پس از آن كوره خاموش و شارژ درون كوره ريخته مي شود وسوراخهاي تخليه مذاب نيز بسته ميشوند ، آنگاه كوره مجددا روشن شده و تا هنگام خميري شدن به فاصله زماني معين نيم دور كوره را به چرخش در مي اورند تا گرماي قسمت بالاي كوره به زير شارژ منتقل شود ، بعد از اينكه شارژ كاملا نرم و شروع به ذوب شدن نمود مي توان حركت چرخشي كوره را بطور مداوم ادامه داد ، بعد از ذوب و دادن فوق ذوب مناسب به مذاب كوره خاموش ، ابتدا سرباره گيري و سپس مذاب در پاتيل پيش گرم شده تخليه مي گردد. بوته ها و پاتيل ها -بوته وسيله اي است كه جهت ذوب فلزات به مقدار كم از آن استفاده ميشود ، ظرفيت بوته ها بر اساس گنجايش مقدار چدن مذاب تعيين مي گردد ، و انواع آن بر اساس جنس عبارتند از بوته هاي گرافيتي ، كاربيد سيليسيم ، چدن و… -عمر بوته ها بستگي به عوامل مختلفي دارد كه در ذيل به تعدادي از آنها اشاره مي شود. -روش انبارداري (درمحلي خشك و بدون رطوبت نگهداري شوند. ) -توجه در مواقع حمل ونقل بوته ها (ضربه يا ايجاد خراش در جدار شيشه اي عمر بوته ها را كاهش ميدهد. -شكستن در اثرشوك حرارتي -اكسيداسيون و جذب شيميايي عناصر از روانسازها و سرباره ها -شارژ نا درست مواد فلزي جامد -آسيب ديدگي در اثر انبر نامناسب كوره هاي القايي -كوره هاي القايي ،كه از نظر مقدار فركانس كاري به سه نوع كم فركانس ، ميان فركانس وپر فركانس تقسيم ميشوند همچنين از نظر ديگر به دو نوع كلي زير تقسيم مي شوند. -كوره هاي القايي كانالي يا با هسته ، -كوره هاي القايي بدون هسته ، -كوره هاي مقاومتي كه خود بر دو نوعند، -كوره مقاومتي بوته اي، -كوره مقاومتي بدون بوته . -در كوره هاي القايي انرژي الكتريكي ، از طريق القاي مقناطيسي در شارژفلزي ،به حرارت تبديل مي شود .اين كوره ها از نظر فركانس برق مصرفي به سه كوره ، كم ، ميان ، وپر فركانس ، و از نظر نحوه انتقال حرارت و ماهيت تبديل انرژي الكتريكي به حرارت ، به دو گروه كوره هاي كانالي و كوره هاي بدون هسته تقسيم ميشوند.اين كوره ها داراي كويل مسي هستند كه در اثر عبور جريان الكتريسيته از آن ، موجب القاي جريان الكتريكي بالايي در سطح فلز درون بوته مي گردد ، اين جريان الكتريسيته ، حرارت زيادي توليد ميكند كه منجر به ذوب سريع فلز مي شود. عبور جريان آب در كويل مسي ، باعث جلوگيري از ذوب شدن خود كويل مي گردد. كوره هاي قوس الكتريكي -در كوره هاي قوس الكتريكي ، انرژي الكتريكي از طريق ايجاد قوس بين الكترودهاي گرافيتي و شارژ فلزي و يا ايجاد قوس بين خود الكترودها ، به حرارت تبديل شده موجب ذوب فلزات ميگردد ،به همين خاطر اين كوره ها را بر دو نوع قوسي مستقيم و قوسي غير مستقيم تقسيم مي كنند. كوره هاي قوسي غير مستقيم معمولا براي ذوب آلياژهاي مس مورد استفاده قرار مي گيرند و براي ذوب انواع فولادها و چدنها از كوره هاي قوسي مستقيم استفاده می شود كوره كوپل - كورهاي كوپل كه براي ذوب چدن متداول اند تشكيل شده اند از : -بدنه فلزي ، كه استوانه اي است فولادي و داخل آن توسط مواد نسوز پوشش داده شده است. -تويرها كه از طريق يك كانال هوا را به داخل كوره هدايت مي كند. -جرقه گير و دود كش كه براي گرفتن غبارات و جلوگيري از پرتاب جرقه ها به كار ميروند. - بوته كه محل ذخيره مذاب است. - دريچه بار دهي ، سوراخ بارگيري ، سوراخ سرباره گيري و... در هنگام روشن كردن كوره ، كك همراه با شمش چدن ، قراضه ، افزودنيهاي آلياژي وسياله سازها را در داخل كوره ريخته ، با شعله ور كردن كك و دمش هوا از طريق تويرها و در نتيجه سوختن سريعتر كك گرماي مناسب براي ذوب چدن فراهم ميشود. امروزه اين كوره ها نيز با تكنولوژي روز رشد قابل توجه اي داشته اند ، در ايران نيز سالهاست كوره هاي كوپل كك سوز و گاز سوز مورد استفاده قرار مي گيرند. كوره هاي زيمنس مارتين -كوره هاي زيمنس مارتين بيشتر براي ذوب فولادها كاربرد دارند و ظرفيت آنها بين 10 تا 125 تن فولاد است. بنابر اين در كارخانجات بزرگ فولادسازي و صنايع نورد فولاد كاربرد دارند. حرارت لازم در اين كوره ها توسط سوخت هاي گازي يا مايع ويا سوختهاي جامد مانند زغالها به دست ميايد. اين نوع كوره ها داراي ريجنراتورهايي است كه هوا وسوخت را قبل از ورود به كوره گرم مي كنند تا راندمان حرارت در داخل كوره افزايش يابد. هوا و سوخت توسط حد اقل دو مشعل كه در دو طرف كوره قرار گرفته اند با هم مخلوط شده و بلافاصله محترق و به داخل كوره هدايت ميشود ، شايان ذكر است كه دو مشعل بطور همزمان عمل نكرده بلكه براي مدت 15 الي 20 دقيقه يك مشعل كار ميكند ، سپس با متوقف شدن آن ، مشعل روبرو شروع به كار مي كند و اين عمل به تناوب تكرار مي شود.در مورد خروج محصول احتراق وهدايت آن در ريجنراتورها براي گرم شدن آجرهاي نسوز داخل آن نيز اين تناوب وجود دارد. كوره هاي بوته اي : همانطو كه از نام آنها پيداست براي عمل ذوب از بوته استفاده مي شود . انتقال حرارت در اين كوره ها بيشتر از طريق هدايت به مواد موجود در داخل بوته مي رود . حرارت به سه طريق منتقل مي شود : 1- هدايت. 2- جابجائي. 3- تشعشعيجنس بوته ها : جنس بوته ها كه استفاده مي كنند به شرح زير است . بوته هاي آهن خالص- بوته هاي فولادي- بوته هاي چدني- بو ته هاي شاموتي- بوته هاي گرافيتي- بوته هاي سيليكون كاربايدي- بوته هاي ديگرآهن خالص براي فلزاتي كه نقطه ذوب كمتري نسبت به آهن دارند و خوردگي كمتري دارند- از بوته هاي آهني براي ذوب موادي كه نقطه ذوب آنها پائين تر از نقطه ذوب آهن خالص است (1539-1536درجه سانتيگراد) است . منيزيم را مجبوريم در داخل اين بوته ذوب كنيم چون با بهترين آجر نسوز نمي توان منيزيم را ذوب كرد و دليلش ميل تركيبي منيزيم با اكسيژن است كه اكسيژن نسوز را مي كشد و نسوز متخلخل مي شود- آهن خالص تجاري: چون آهن بصورت خيلي خالص بندرت يافت مي شود , بيشتر از اين آهن استفاده مي شود و خلوصش 8/99% است و ناخالصي اش 2/0-1/0% مي باشد. آهن خالص تجاري را در دنيا برخي از شركتها توليد مي كنند . از جمله شركت آرمكو و وستينگ هاوس در آمريكا توليد مي كنند كه براي ذوب آلياژهاي با نقطه ذوب كم مثل روي , منيزيم , سرب و ... از اين ورقها بوته درست كرده (بوته يكپارچه) استفاده مي كنند (بوته را جوش نمي زنند بلكه با آهنگري درست مي كنند بلكه پرس و گرم كاري)- از بوته هاي چدني براي ذوب آلياژهاي روي , آلومينيوم و ساير آلياژها با نقطه ذوب پائين استفاده مي كنند بشرطيكه مشكل آهن در آن آلياژها وجود نداشته باشد . تجربه نشان مي دهد مذاب Al و Zn , آهن را در خود حل مي كند چون چدن داراي انتقال حرارت خوب است (بدليل گرافيتهاي لايه اي) و ارزان ريخته گري مي شود . در ايران بيشتر از بوته هاي چدني استفاده مي شود . بوته هاي فولادي : از بوته هاي فولادي براي ذوب آلياژها با نقطه ذوب كم و آلياژهائي كه ميل تركيبي زيادي نسبت به اكسيژن دارد مثل آلياژهاي منيزيم كه علاقه دارند اكسيژن مواد نسوز را بگيرند , استفاده مي كنند . فولادهاي معمولي خوردگي بيشتري دارند و مذاب آلياژهاي مختلف در آن تدريجاً آن را مي خورند (يعني بدنه را در خود حل مي كنند). بوته از جنس مواد نسوز دوام بيشتري در برابر پوسته پوسته شدن يعني اكسيد شدن دارد . آناليز يك نوع فولاد نسوز عبارتست از 25% كرم و 20% نيكل و بقيه عناصر جزئي ديگر , از آلياژهاي ديگر نيز كه قيمت آنها گران است بعنوان بوته مي توان استفاده كرد , از جمله آلياژ 50% كرم و 50% نيكل يا آلياژ 50% كرم و 50% نيكل و كمي نيوبيوم Nb (كه دوام و مقاومت خوبي دارد) . بوته هاي گرافيتي : همانطور كه از نام اين بوته ها پيداست , جنس اين بوته ها از گرافيت مي باشد . (مي دانيم كه كربن در طبيعت به سه صورت ديده مي شود : 1) كربن بي شكل : اين كربن شكل بلوري ندارد و به آن كربن آمولف نيز مي گويند . اين كربن در اثر حرارت در مجاورت اكسيژن , مي سوزد و خاكستر از آن باقي مي ماند. 2) كربن بصورت گرافيت : اين نوع كربن بصورت بلوري (كريستالي) مي باشد و بلوري آن طوري است كه داراي صفحات لغزش است و اين صفحات مي توانند روي هم براحتي بلغزند . بهترين آنها گرافيت چرب نقره اي است . اين گرافيت ماده نسوز است و نقطه ذوبي در حدود بيش از 3000 درجه سانتيگراد دارد گرافيت راسب (رسوب يافته) شده در حين انجماد در چدنهاي خاكستري از اين نوع است كه از مذاب جدا شده . 3) كربن بصورت الماس : بلور اين نوع كربن بصورت يك هشت وجهي است ولي رنگي و شفاف است و با سختي 10 موهس سخت ترين ماده در طبيعت مي باشد . بوته هاي گرافيتي بدليل اينكه نقطه ذوب بالا داشته و گرافيت نيز علاوه بر نسوز بودن از انتقال حرارت زيادي نيز برخوردار است هدايت خوبي داشته و حرارت را از جداره خود به داخل بوته هدايت مي كند . طرز ساخت بوته هاي گرافيتي : به اين شكل است كه گرافيت را همراه با كمي قير و مواد چسبي آغشته كرده و با فشار زياد پرس مي كنند سپس آن را در مدت زمان طولاني در محيط بسته اي دور از هوا مي پزند (دما در حدود 1600 درجه سانتيگراد) تا عمل تف جوشي (زينتر) روي آن انجام شود و به آرامي در كوره سرد مي شود . بوته هاي سيليكون كاربايد : اين نوع بوته ها از استحكام بيشتري برخوردارند و خود ماده سيليكون كاربايد در اثر حرارت , كمي منقبض و منبسط مي شود . يكي از بهترين موادي است كه به شك حرارتي مقاوم است . براي ذوب چدن بيشتر از بوته هاي سيليكون كاربايدي استفاده مي شود چون چدن آلياژيست از آهن- كربن- سيلسيم , پس كمتر علاقه دارد جداره را بخورد . بوته هاي شاموتي : اين بوته ها از خاك رس نسوز ساخته مي شود . از ريختن رس نسوز در اثر حرارت اصطلاحاً شاموت به دست مي آيد . البته درجه نسوز بوته هاي شاموتي بستگي به درجه خلوص شاموت دارد . بهترين ماده شاموت آن است كه پس از پخت , مقدار فازهاي موليت در حداكثر خود قرار گيرد (1800 0C . 3Al2O3 . 2SiO2). موليت نسوزي است كه تا دماي 1800 0C مي تواند دوام بياورد , در ضمن از نظر مقاومت مكانيكي در دماي بالا نيز خوب است . در بوته هاي شاموتي آلياژهاي غير آهني و بندرت چدن ذوب مي شود . معمولاً دوام بوته هاي شاموتي تا دماي 1650 0C است . انواع كوره هاي بوته اي : Crucible Furnaces الف) كوره بوته اي چرخان) 1- چرخان حول تقريباً كمي بالاتر از مركز ثقل – 2- چرخان حول محور ناوداني كوره ب) كوره بوته اي ثابت (زميني) ) 1- با سوخت جامد - اين نوع كوره ها دو نوعند,يكي كوره سنتي است كه از سوخت جامد زغال سنگ يا كك براي عمل ذوب استفاده مي كردند.اين نوع كوره نياز به برق نداشت و با هواي طبيعي كه از زير كوره از لابه لاي ميله هاي كف به داخل كشيده مي شد زغال سنگ يا ككها را مشتعل مي ساخت . براي ذوب فلزات مخصوصاً چدن بوته را در داخل ككها دفن مي كردند تا هم از بالا و هم از بغل ها و هم از زير حرارت به فلز برسد و ذوب خوب و كامل انجام شود. (براي ذوب چدن در اين كوره ها اول بايد ككها را الك كرد يعني ككها را دسته بندي كرد از درشت به ريز و پودر,كك درشت در زير و بعد بوته و بعد شارژ و چند كك گنده در داخل بوته و كك متوسط در اطراف و ريزها را در اطراف مي ريزيم و بقيه را در بالا مي گذاريم. 2- با سوخت مايع – نقشه اين كوره در شكل آمده است كه براي ذوب 100-150 كيلوگرم چدن مي باشد, سوخت اين كوره ها از گازوئيل با ارزش حرارتي 9300 كيلو كالري بر ليتر درجه سانتيگراد يا مازوت با ارزش حرارتي 1100 كيلو كالري بر ليتر درجه سانتيگراد است و مي توان با استفاده از بوته هاي گرافيتي در آن چدن ذوب كرد. مشعل آن از نوع فارسونگاهي(يك نوع مشعل ساده صنعتي كه از طريق يك لوله رابط به يك ونتيلاتور(دمنده هوا) وصل شده است).نوع ونتيلاتور يا دمنده هوا بستگي به ظرفيت كوره انتخاب مي شود , معمولاً دمنده هائي كه پس از ساخت بالانس شده اند را در اين كوره ها قرار مي دهند (در تهران ,مظفريان و در تبريز,كارخانه متحد) بدنه كوره از اسكلت فلزي است , از تكه لوله هاي 40 اينچي يا بالاتر از آن به ارتفاع 130 سانتيمتر و اگر نبود از ورق 6 mm به بالا رول كرده و به هم جوش مي زنيم .قطر داخلي 100 و ارتفاع 130- 110 cm پس 100*14/3=314 cm قطر داخلي بدنه مي باشد كه از جوش زدن ورق گسترده بدست مي آيد. و در كف بدنه رول شده رينگ مي زنيم و ميله هاي در جاي خالي رينگ جوش مي دهيم رويش آجر نسوز با كمي شيب قرار مي دهيم تا سرباره ها بيرون رود , بعد كف بوته قرار داده مي زنيم كه كف بوته مي تواند بوته شكسته باشد و سپس از پائين به بالا نسوز كاري مي كنيم كه نسوز جداره 20- 15 cm است. فارسونگاه را طوري مي گذاريم كه بصورت مماس به كف بوته بخورد تا شعله دور بزند. از كوره هاي تشعشعي ثابت براي ذوب آلياژهاي غير آهني مخصوصاً آلومينيوم استفاده مي كنند , در اين كوره ها شعله مستقيماً به مذاب نمي خورد , زيرا اگر مستقيماً به مذاب بخورد موجب اكسيده كردن آن مي شود. كوره هاي تشعشعي نيمه چرخان : از اين كوره ها نيز براي ذوب آلياژهاي غير آهني استفاده مي كنند و موقع تخليه مذاب , كوره چرخانده مي شود يا در هنگام شارژ كوره چرخانده شده و شارژ را تحويل مي گيرد. در اين كوره ها نيز سعي مي شود شعله به ديواره ها برخورد كرده و برخورد مستقيم با مذاب نداشته باشد. كوره هاي دوار : كوره هاي دوار كه براي ذوب چدن در سال 1930 در آلمان ساخته شد ولي در حال حاضر در دنيا بيشتر انگليسي ها از آن استفاده مي كنند . يك شركت در انگلستان به نام Manometer سازنده اين نوع كوره ها است. Rotary Furnace كه با ظرفيت هاي 250Kg تا 70 تن مذاب چدن و تا 12 تن مذاب آلومينيوم مي سازد . سوخت اين نوع كوره ها گاز , گازوئيل و مازوت است . كوره هائي با ظرفيت كمتر با دست و كوره هاي با ظرفيت بيشتر به كمك جراثقيل شارژ مي شوند. كوره روي جكهاي مربوطه به اندازه 45 درجه بلند مي شود و بعد از شارژ دوباره به جاي خودش بر مي گردد. جداره نسوز اين كوره ها براي ذوب چدن , خاك نسوز سيليسي و براي ذوب آلياژهاي آلومينيوم خاك نسوز آلومينائي است . ساختمان اين كوره ها : اين كوره ها شامل يك اسكلت فلزي كه به شكل يك استوانه متصل به دو مخروط ناقص است و توسط فلنچ روي استوانه و مخروط ها به يكديگر متصل مي شود . به طرف دهانه بزرگ مخروط ها و هر دو طرف استوانه فلنچ نصب شده و روي استوانه دو غلطك وصل مي شود. غلطكهاي محرك , كوره را با سرعت يك دور در دقيقه مي چرخانند 1 r.p.m و در ايران با سرعت تقريباً 2 r.p.m درست مي شود . در كشور كوره هاي دوار توسط بعضي از افراد ساخته مي شود , يكي از سازندگان خوب اين كوره ها حاج صادق مهامي در تهران (ايران ذوب) كه كوره هائي با ظرفيت 250- 350- 500 Kg و 1 تن را مي سازد . اولين كوره كه در ايران در تسليهات ارتش تهران توسط مهندس پسيان و مهندس گرنسر آلماني ساخته شد و شروع به ذوب چدن نمود . در ايران ظرفيت 500 Kg در ريخته گريهاي چدن زياد استفاده مي شود , زيرا خاك نسوز داخل آن خاك سيليسي بودهو قابل تهيه در داخل كشور است . چون بوته هاي گرافيتي گران است , بيشتر از اين كوره ها در ايران استفاده مي شود. در يك طرف مخروط ناقص مشعل و در طرف ديگر دودكش است , در بعضي از طرح كوره ها دود از سقف كارگاه با كانالي خارج مي شود و در تعدادي از آنها نيز دود توسط كانالهائي به زيرزمين كارگاه كشيده شده و از گرماي آن براي پيش گرم كردن هواي ورودي استفاده مي كنند . تجربه نشان مي دهد كه به راحتي مي توان با استفاده از گرماي دود , هواي ورودي را حدود 250- 350 درجه سانتيگراد گرم كرد. اين عمل باعث مي شود راندمان حرارتي كوره بالا رفته و حدود 50 درجه سانتيگراد مذاب داغتر بيرون بيايد. (مي توانيم ونتيلاتور را از دودكش كوره به طرف دهانه منتقل داد.) طرز بهره برداري از كوره : ابتدا كوره را روشن مي كنند و كوره را به دوران در مي آورند تا كاملاً بطور يكنواخت مواد نسوز داخل كوره حرارت ديده و گرم شود و تا آن مدتي روشن مي كنيم كه نسوزهاي داخل كوره از حرارت اشباع شود
  5. برخي کاربردهاي قطعي و اجتناب*ناپذير نانوتکنولوژي در صنايع سنگين است: هوانوردي: مواد سبک*تر و با استحکام بيشتر کاربردهاي وسيعي در سازه*هاي هوانوردي و نيز در فضانوردي دارند. زيرا در هر دو مورد وزن شاخص مهمي در فرآيندها و دستگاه*هاي هوانوردي و فضانوردي است. پالايش*گاه*ها: با استفاده از کاربردهاي نانوتکنولوژي محصولات پالايش*گاه*ها (نظير فولاد و آلومينيوم) با خلوص بيشتري توليد خواهند شد. صنعت حمل و نقل: مواد سبکي که در عين حال از استحکام خوبي هم برخوردار باشند، در صنعت حمل و نقل نيز به*کار گرفته مي*شوند. وسايلي که از اين مواد ساخته شده باشند، هم سرعت بيشتري دارند و هم از امنيت بيشتري برخوردارند. سازه*هاي ساختماني: بتن يکي از مهم*ترين سازه*هاي ساختماني است که هرچه مقاومت و نفوذپذيري آن بالاتر باشد، *مرغوب*تر است. با اضافه کردن نانوذرات ويژه*اي به سنگ*هاي متخلخل بتن و پخش يکنواخت اين ذرات مي*توان بتني با مقاومت بالا، نفوذپذيري کم و البته به طور قابل*ملاحظه اي سبک توليد کرد. کاربردهاي نانو در فناوري اطلاعات و ارتباطات دستگاه*هاي نيمه*رساناي جديد دستگاه*هايي که ساختار آنها بر اسپينوترنيک مبتني است نمونه*اي از به*کارگيري نانوتکنولوژي در صنعت ارتباطات و فناوري اطلاعات است. مقاومت ماده در برابر ميدان خارجي که از اسپين الکترون*ها ناشي مي*شود، مقاومت مغناطيسي نام دارد. اين مقاومت مي*تواند به طور قابل ملاحظه*اي در اشياء نانومقياس تقويت شود. اين مقاومت مغناطيسي که به gmr موسوم است ميزان چگالي ذخيره*اي داده*ها را در ديسک سخت افزايش مي*دهد. نوع ديگري از مقاومت مغناطيسي، مقاومت مغناطيسي تونل*زن (tmr) است و به دليل وابستگي اسپين الکترون*ها به تونل*زني آن الکترون از لايه*هاي فرومغناطيس مجاور اتفاق مي*افتد. اثرات gmr و tmr هردو مي*توانند در ساخت يک حافظه*ي اصلي غير فرار براي کامپيوترها مورد استفاده*ي علمي قرار گيرند. چنين کاربردي در ساختار حافظه دسترسي تصادفي مغناطيسي (mram)* ديده مي*شود. در فناوري اطلاعات نوين، دستگاههاي الکتريکي آنالوگ قديمي به وسيله*ي دستگاه*هاي الکترونوري يا نوري جايگزين مي*شوند. زيرا اين دستگاه*ها به ترتيب پهناي باند و ظرفيت بيشتري نسبت به دستگاه*هاي قبلي دارند. در اين عرصه بلورهاي فوتونيک و نقاط کوانتومي دو موضوعي هستند که نتايج تحقيقات در باره*ي آنها بسيار اميدبخش است. بلورهاي فوتونيک موادي هستند با يک متغيير تناوبي در شاخص انکساري با يک شبکه که نصف طول*موج نوري است که مورد استفاده قرار مي*گيرد. اين بلورها شبيه نيمه*رساناها عمل مي*کنند، با اين تفاوت که نيمه*رساناها با الکترون*ها سروکار دارند ولي اين بلورها با نور و فوتون*ها. کامپيوترهاي کوانتمي: تمام دستاوردهاي جديد در زمينه*ي کامپيوتر از قوانين کوانتم براي کامپيوترهاي کوانتمي جديد استفاده مي*کند. اين کامپيوترها سبب کوتاه شدن زمان انجام الگوريتم مي*شوند.
  6. mim-shimi

    پلیمرهای حرارتی

    پلیمرها، بخش عمده ای از مشتقات نفتی هستند كه در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده كه می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد كه علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می كنند. پلیمرها، بخش عمده ای از مشتقات نفتی هستند كه در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده كه می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد كه علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می كنند. هنگامی كه تركیبات آلی در دمای بالا حرارت داده می شوند، به تشكیل تركیبات آروماتیك تمایل پیدا می كنند. بنابراین می توان 7ا در صنایع هوا- فضا مورد استفاد٘? در مقابل دماهای بالا مقاوم باشند. انواع وسیعی از پلیمرها كه واحد های تكراری آروماتیك دارند، در سالهای اخیر توسعه و تكامل داده شده اند. این پلیمرها در صنایع هوا- فضا مورد استفاده قرار می گیرند، زیرا در برابر دمای زیاد پایداری مطلوبی از خود نشان می دهند. برای این كه یك پلیمر در برابر حرارت و در برابر گرما مقاوم تلقی شود، نباید در زیر دمای ۴۰۰ درجه سانتی گراد تجزیه شود. هم چنین باید خواص مورد نیاز و سودمند خود را تا دماهای نزدیك به دمای تجزیه حفظ كند. این گونه پلیمرها دارای Tg بالا و دمای ذوب بالا هستند. پس می توان گفت پلیمرهای مقاوم حرارتی به پلیمرهایی گفته می شود كه در دمای بالا بكار برده می شوند، به طوری كه خواص مكانیكی، شیمیایی و ساختاری آنها، با خواص سایر پلیمرها در دماهای پایین متفاوت باشد. پلیمرهای مقاوم حرارتی به طور عمده در صنایع اتومبیل سازی، صنایع هوا- فضا، قطعات الكترونیكی، عایق ها، لوله ها، انواع صافی ها، صنایع آشپزی و خانگی، چسب ها و پوشش سیم های مخصوص مورد استفاده قرار می گیرد. پلیمرهای یاد شده هم به روش آلی و هم به روش معدنی تهیه می شوند. ذكر این نكته مهم است كه روش آلی متداول تر و اغلب پژوهش ها توسط دانشمندان پلیمر در این زمینه ها به ثمر رسیده است. پایداری حرارتی پایداری حرارتی پلیمرها، تابع فاكتورهای گوناگونی است. از آنجا كه مقاومت حرارتی تابعی از انرژی پیوندی است، وقتی دما به حدی برسد كه باعث شود پیوندها گسیخته شوند، پلیمر از طریق انرژی ارتعاشی شكسته می شود. پس پلیمرهایی كه دارای پیوند ضعیفی هستند در دمای بالا قابل استفاده نیستند و از بكار بردن منومرها و هم چنین گروه های عاملی كه باعث می شود این پدیده تشدید شود، باید خودداری كرد. البته گروه هایی مانند اتر یا سولفون، نسبت به گروه هایی مانند آلكیل و NH و OH پایدارتر هستند، ولی وارد كردن گروه هایی مانند اتروسولفون و یا گروههای پایدار دیگر صرفاً بخاطر بالا بردن مقاومت حرارتی نیست، بلكه باعث بالا رفتن حلالیت نیز می شوند. تاثیرات متقابلی كه بین دو گونه پلیمری وجود دارد، ناشی از تاثیرات متقابل قطبی- قطبی، و پیوند هیدروژنی (۶-۱۰ Kcal/mol) است كه باعث بالا رفتن مقاومت حرارتی در پلیمرها می شوند. این قبیل پلیمرها باید قطبی و دارای عامل هایی باشند كه پیوند هیدروژنی را بوجود آورند، مانند: پلی ایمیدها و پلی یورتانها. انرژی رزونانسی كه به وضوح در آروماتیك ها به چشم می خورد، مخصوصاً در حلقه های هتروسیكل و فنیلها و كلاً پلیمرهایی كه استخوان بندی آروماتیكی دارند باعث افزایش مقاومت حرارتی می شوند. در مورد واحدهای تكراری حلقوی، شكستگی یك پیوند در یك حلقه باعث پایین آمدن وزن مولكولی نمی شود و احتمال شكستگی دو پیوند در یك حلقه كم است. پلیمرهای نردبانی یا نیمه نردبانی پایداری حرارتی بالاتری نسبت به پلیمرهای زنجیره باز دارند. بنابراین اتصالات عرضی موجب صلب پلیمرهای خطی می شوند كه شامل حلقه های آروماتیك با چند پیوند یگانه مجزا هستند. با توجه به نكاتی كه ذكر شد برای تهیه پلیمرهای مقاوم حرارتی باید نكات زیر رعایت شوند. - استفاده از ساختارهایی كه شامل قوی ترین پیوند های شیمیایی هستند. مانند تركیبات هتروآروماتیك، آروماتیك اترها و عدم استفاده از ساختارهایی كه دارای پیوند ضعیف مثل آلكیلن- آلیسیكلیك و هیدروكربن های غیر اشباع می باشند. - ساختمان تركیب باید به گونه ای باشد كه به سمت پایدار بودن میل كند، پایداری رزونانسی آن زیاد باشد و بالاخره ساختارهای حلقوی باید طول پیوند عادی داشته باشند، به نحوی كه اگر یك پیوند شكسته شد، ساختار اصلی، اتم ها را كنار هم نگه دارد. لباس فضا نوردان امروزه در زمینه پلیمرهای مقاوم حرارتی پیشرفت های زیادی حاصل شده است. پژوهشگری به نام كارل اسی مارول كه یك محقق برجسته در زمینه مقاومت حرارتی پلیمرها است، باعث توسعه تجارتی پلی بنزایمیدازول، با نام تجارتی PBI ، شده است كه به شكل الیاف برای تهیه لباس فضانوردان مورد استفاده قرار می گیرد. البته این تنها یكی از موارد كاربردهای متنوع پلیمرهای مقاوم حرارتی در برنامه های فضایی است. بی تردید اگر سالها پژوهش علمی و آزمایش های گوناگون موجب كشف الیاف پلیمری مقاوم برای تهیه لباس فضا نوردان نمی شد، هیچ فضا نوردی نمی توانست به فضا سفر كند. طی سال های اخیر گونه های وسیعی از پلیمرهای آروماتیك و آلی فلزی مقاوم در برابر گرما، توسعه و تكامل داده شده اند، كه تعداد كمی از آنها به علت قیمت بالای آنها در تجارت قابل قبول نبوده اند. پلیمرهای آروماتیك، به خاطر اسكلت ساختاری صلب، دمای گذار شیشه ای Tg و ویسكوزیته بالا، قابلیت حلالیت كم دارند، بنابراین سخت تر از سایر پلیمرها هستند. در حال حاضر بالاترین حد مقاومت گرمایی از پلیمرهای آلی بدست آمده است، بنابراین در سال های اخیر تاكید روی معرفی تفاوت های ساختاری پلیمرها بوده است. پیوستن گروه های انعطاف پذیر مانند اتر یا سولفون در اسكلت، یك راهكار است. هر چند این اقدامات باعث حلالیت بیشتر، ویسكوزیته كمتر و معمولاً پایداری حرارتی كم می شود. نگرش دیگر برای وارد كردن گروههای آروماتیك حلقه ای این است كه به صورت عمودی در اسكلت صفحه ای آروماتیك قرار می گیرد. همان طور كه در پلی بنزایمیدازول اشاره شد این ساختارها كه »كاردو پلیمر« نامیده می شوند معمولاً پایداری بالایی دارند، بدون این كه خواص دمایی آنها از بین برود. وارد كردن اسكلت با گروههای فعال كه در اثر گرما موجب افزایش واكنش حلقه ای بین مولكولی می شوند، راهی دیگر برای پیشرفت روندكار است. مهم ترین و پرمحصول ترین راه از نقطه نظر توسعه تجارتی، سنتز الیگومرهای آروماتیك یا پلیمرهایی است كه با گروههای پایانی فعالی، خاتمه داده شده اند. الیگومرهایی كه انتهای آنها فعال شده اند، در دمای نسبتاً پایین ذوب می شوند و در انواع حلال ها نیز حل می شوند. هم چنین در موقع حرارت دادن به پلیمرهای شبكه ای پایدار تبدیل می شوند. مقاومت در برابر حرارت هنگامی كه از پلیمرهای مقاومت حرارتی صحبت می شود باید مقاومت حرارتی آنها را برحسب زمان و دما تعریف كنیم. افزایش هر كدام از فاكتورهای ذكر شده موجب كاهش طول عمر پلیمر می شود و اگر هر دو فاكتور افزایش یابند طول عمر به صورت لگاریتمی كاهش می یابد. به طور كلی اگر یك پلیمر به عنوان پلیمر مقاوم حرارتی در نظر گرفته می شود، باید به مدت طولانی در ۲۵۰ درجه سانتی گراد، در زمان های متوسط در پانصد درجه سانتی گراد و در كوتاه مدت در دمای یكهزار درجه سانتی گراد خواص فیزیكی خود را حفظ كند. به طور دقیق تر یك پلیمر مقاوم حرارتی باید طی سه هزار ساعت و در حرارت ۱۷۷ درجه سانتی گراد، یا طی یكهزار ساعت در ۲۶۰ درجه سانتی گراد، یا طی یك ساعت در ۵۳۸ درجه سانتی گراد و یا طی ۵ دقیقه در ۸۱۶ درجه سانتی گراد، خواص فیزیكی خود را از دست ندهد. برخی از شرایط ضروری برای پلیمرهای مقاوم حرارتی، بالا بودن نقطه ذوب، پایداری در برابر تخریب اكسیداسیونی در دمای بالا، مقاومت در برابر فرآیندهای حرارتی و واكنش گرمای شیمیایی است. سه روش اصلی برای بالا بردن مقاومت حرارتی پلیمرها وجود دارد. افزایش بلورینگی، افزایش اتصال عرضی و حذف اتصال های ضعیفی كه در اثر حرارت اكسید می شوند. افزایش بلورینگی، كاربرد پلیمرها را در دمای بالا محدود می كند. زیرا موجب كاهش حلالیت و اختلال در فرآورش می شود. برقرار كردن اتصال های عرضی در الیگومرها روش مناسبی است و خواص پلیمر را به طور واقعی اما غیر قابل برگشت تغییر می دهد. اتصالاتی كه باید حذف شود شامل اتصال های آلكیلی، آلیسیكلی، غیر اشباع و هیدروكربن های غیر آروماتیك و پیوند NH است . اما اتصالاتی كه مفید است شامل سیستم های آروماتیكی، اتر، سولفون و ایمید و آمیدها هستند. این عوامل پایدار كننده به صورت پل در ساختار پلیمر واقع و موجب پایداری آنها می شوند. از طرفی ضروری است كه پلیمر از قابلیت به كار گیری و امكان فرآورش مناسب برخوردار باشد. پس باید تغییرات ساختاری طوری باشد كه حلالیت و فرآورش مناسب تر داشته باشند. برای این منظور باید از واحد های انعطاف پذیرِ اتر، سولفون، آلكیل و همچنین از كوپلیمره كردن، و تهیه ساختارهایی با زنجیر نامنظم استفاده كرد.به طور كلی پلیمرهای مقاوم حرارتی به چهار دسته تقسیم می شوند. پلیمرهای تراكم ساده، مانند پلیمرهایی كه از حلقه آروماتیك تشكیل شده اند و با اتصالات تراكمی به یكدیگر متصل هستند. پلیمرهای هتروسیكل، یعنی پلیمرهایی كه از حلقه های آروماتیك تشكیل شده اند اما از طریق حلقه های هتروسیكل به هم وصل شده اند. كوپلیمرهای تركیبی تراكمی هتروسیكل، یعنی پلیمرهایی كه شامل تركیبی از اتصال های تراكمی ساده و حلقه های هتروسیكل می باشند و پلیمرهای نردبانی كه شامل دو رشته زنجیر هستند.
  7. امروزه برای مستقل نمودن شوفاژ و آبگرم مصرفی هر آپارتمان بکار گرفتن دیگ پکیج هر روز کاربرد بیشتری پیدا می کند. یک دیگ پکیج دو مدار گردش آب دارد. مدار بسته آبگرم برای گرم کردن رادیاتورهای یک سیستم حرارت مرکزی و مدار باز آبگرم برای آبگرم مصرفی بکار می رود. در مدار شوفاژ دیگ پکیج پمپ سیرکولاسیون برای به گردش در آوردن آبگرم از داخل دیگ به رادیاتورها و پس از انتقال حرارت از طریق رادیاتورها به محیط دو مرتبه بداخل دیگ پکیج آبگرم را بر میگرداند. آکوستات تنظیم برای تنظیم درجه حرارت آبگرم شوفاژ و آکوستات اطمینان که همواره برای "90 درجه سانتیگراد تنظیم شده است . بعلاوه یک تابلو برق دارای کلید قطع و وصل مشعل و پمپ و همچنین منبع انبساط بسته و دو شیر اطمینان یکی در مسیر آبگرم شوفاژ و دیگری در مسیر آبگرم مصرفی قرار میگیرد تا مانع از بالا رفتن فشار از حد مجاز شود. شمای زیر انواع دیگهای پکیج رایج در قسمت شوفاژ را نشان میدهد. می توان آنها را به سه دسته اصلی تقسیم نمود. 1- مدار شوفاژ کویلی و مدار آبگرم مصرفی کویلی در این نوع دیگ های پکیج مشعل آن اتمسفریک گازی می باشد شعله مشعل با حرکت آب در کوئل ها و دادن فرمان از طریق شیرها مسیر گاز را باز می نماید این عمل در مدار شوفاژ و آبگرم مصرفی به همین طریق انجام می گیرد. این نوع دیگ های پکیج از ظرفیت 000/10 تا 000/20 کیلو کالری در ساعت در صنعت ساخته می شود. A - مزیت : 1- ابعاد این دیگ پکیج به نسبت ظرفیت با مقایسه با سایر مدل ها کوچکتر می باشد. 2- آب بطور لحظه ای گرم می شود زمان جهت گرم کردن آب لازم نیست. B - معایب : 1- چون شیرهای فرمان گاز با آب تماس دارند چنانچه آب رسوب داشته باشد که معمولا" آبهای مصرفی دارای رسوب هستند باعث می گردد شیرهای فرمان در اثر رسوب فرمان باز شدن گاز را ندهند و مشعل روشن نشود. لذا لازم است حد اقل سالی یکبار دستگاه سرویس و شیر های فرمان تمیز گردد. 2- چنانچه فشار آب کم باشد شیرهای گاز باز نمی شود. 3- راندمان حرارتی بعلت اینکه مسیر جذب حرارت یک پاس می باشد پائین است. 4- در مدار آبگرم مصرفی مقدار آبگرم ذخیره وجود ندارد با خاموش شدن مشعل آبگرم وجود ندارد. 2 - مدار شوفاژ مخزنی و مدار آبگرم کویلی در این نوع دیگ های پکیج مدار شوفاژ مخزنی از چدن یا از فولاد آتشخوار بوده و مشعلی که برای گرم کردن آب دیگ بکار میرود می تواند گازی اتمسفریک یا فن دار و گازوئیلی فن دار باشد آبگرم مصرفی از کویل مسی که داخل مخزن شوفاژ شناور بود حرارت حاصل از آبگرم شوفاژ باعث گرم کردن آبگرم مصرفی که از داخل کویل مسی عبور می کند می شود. A - مزیت : 1- در این نوع دیگ پکیج می توان از مشعل فن دار یا اتمسفریک گازی و یا از مشعل گازوئیلی استفاده کرد امکان استفاده از دو نوع سوخت گاز و گازوئیل می باشد. 2- راندمان حرارتی آن بالاتر از دیگ پکیج کویلی می باشد بخصوص اگر مخزن از فولاد آتشخوار باشد راندمان آن بالاتر از مخزن چدنی میباشد. B - معایب : 1- مخزن آبگرم کویلی از مس در اثر رسوب آب مقطع آن باریک می شود چنانچه رسوب گیری نشود پس از مدتی بر حسب در صد سختی آب مقطع آن بطور کلی بسته می شود. 2- مقدار آبگرم مصرفی ذخیره در داخل کویل مسی کم است. 3 - مدار شوفاژ مخزنی مدار آبگرم مخزنی در این نوع دیگهای پکیج مدار شوفاژ مخزنی از چدن یا از فولاد آتشخوار می باشد مانند نوع دوم مشعل که برای گرم کردن آب بکار میرود می تواند گازی یا گازوئیلی باشد مشعل های گازی اتمسفریک یا فن دار یا مشعل گازوئیلی فن دار بر روی آن قرار گیرد. آبگرم مصرفی مخزنی در داخل آبگرم شوفاژ شناور می باشد حرارت از آبگرم شوفاژ از جدار مخزن آبگرم مصرفی بداخل آبگرم مصرفی منتقل می گردد. مخزن آبگرم مصرفی از جنس گالوانیزه – لعابی – مسی – استنلس استیل در صنعت تولید می شود. A - مزیت : 1- راندمان حرارتی این نوع دیگ های پکیج بالاتر از حالتهای قبل می باشد. 2- می توان از مشعل های گازی یا گازوئیلی استفاده نمود. 3- مخزن آبگرم مصرفی دارای مقدار کافی آبگرم ذخیره می باشد. 4- مقدار دبی آبگرم مصرفی همواره کافی می باشد در فاصله زمانی که آبسرد از قسمت پائین منبع آبگرم مصرفی به بالا میاید آبگرم مصرفی گرم می شود. لذا همواره با دبی کافی آبگرم مصرفی وجود دارد. 5- چنانچه مخزن از استنلس استیل باشد رسوب به جدار آن نمی چسبد و زنگ نمی زند. عمر این مخزن ها بیش از 30 سال پیش بینی می شود. 6- چنانچه مخزن شوفاژ از فولاد آتشخوار باشد عمر این دیگ پکیج را بیش از 20 سال پیش بینی می کنند. B - معایب : 1- مدار شوفاژ مخزنی از چدن امکان ترکیدگی پره های چدنی در اثر تغییرات ناگهانی درجه حرارت وجود دارد. 2- راندمان دیگ های پکیج چدنی معمولا" کمتر از دیگ پکیج مخزنی از فولاد آتشخوار می باشد. 3- مخزن گالوانیزه چنانچه پس از جوشکاری مجددا" گالوانیزه نشود ( معمولا" در صنعت این عمل انجام نمی گیرد) عمر زیادی ندارد. 4- مخازن لعابی رسوب را به بدنه آن می چسبد لازم است هردوسال یک بار رسوب زدائی شود. نتیجه : بنظر متخصصین بهترین نوع دیگ پکیج نوع مدار شوفاژ مخزنی از فولاد آتشخوار و مدار آبگرم مصرفی از استنلس استیل می باشد. مزیت : 1- فولاد آتشخوار در مقابل آتش مقاوم می باشد. 2- بعلت اینکه سطح آن نسبت به چدن صاف تر است رسوب کمتر می چسبد لذا انتقال حرارت از مسیر دود به آب بهتر از دیگ چدنی انجام می گیرد. امروزه در دنیا دیگهای شوفاژ را از فولاد آتشخوار می سازند دیگ های فولادی آتشخوار نسبت به دیگهای چدنی مزیت بسیار دارد. 3- مخزن استنلس استیل بعلت صافی سطح رسوب روی آن نمی چسبد احتیاج به رسوب زدائی ندارد چون زنگ نمی زند عمرزیادی دارد. توجه : دستگاه پکیج باید در محلی قرار گیرد که اکسیژن لازم برای عمل احتراق را خارج از هوای داخل ساختمان بگیرد و دود حاصل به خارج از ساختمان منتقل شود. قرار دادن دیگ پکیج در آشپزخانه باید به طریقی نصب گردد که هوای لازم جهت عمل احتراق را از خارج بگیرد اگر هوای داخل آپارتمان را مصرف نماید اکسیژن داخل ساختمان را مصرف نموده به جای CO2 که رنگ و بو ندارد جایگزین می نماید این عمل باعث سر درد و سرگیجه ساکنین می گردد. چنانچه این عمل برای مدتی ادامه پیدا کند و درب و پنجره ساختمان بسته باشد بطوریکه هوا تهویه نشود باعث مرگ ساکنین خواهد شد. به نقل ازHAVC
×
×
  • اضافه کردن...