رفتن به مطلب

جستجو در تالارهای گفتگو

در حال نمایش نتایج برای برچسب های 'پلیمر'.



تنظیمات بیشتر جستجو

  • جستجو بر اساس برچسب

    برچسب ها را با , از یکدیگر جدا نمایید.
  • جستجو بر اساس نویسنده

نوع محتوا


تالارهای گفتگو

  • انجمن نواندیشان
  • فنی و مهندسی
  • علوم پزشکی
  • علوم پایه
  • ادبیات و علوم انسانی
  • فرهنگ و هنر
  • مراکز علمی
  • مطالب عمومی
  • مکانیک در صنعت مکانیک در صنعت Topics
  • شهرسازان انجمن نواندیشان شهرسازان انجمن نواندیشان Topics
  • هنرمندان انجمن هنرمندان انجمن Topics
  • گالری عکس مشترک گالری عکس مشترک Topics
  • گروه بزرگ مهندسي عمرآن گروه بزرگ مهندسي عمرآن Topics
  • گروه معماری گروه معماری Topics
  • عاشقان مولای متقیان علی (ع) عاشقان مولای متقیان علی (ع) Topics
  • طراحان فضای سبز طراحان فضای سبز Topics
  • بروبچ با صفای مشهدی بروبچ با صفای مشهدی Topics
  • سفيران زندگي سفيران زندگي Topics
  • گروه طرفدارن ا.ث.میلان وبارسلونا گروه طرفدارن ا.ث.میلان وبارسلونا Topics
  • طرفداران شياطين سرخ طرفداران شياطين سرخ Topics
  • مهندسی صنایع( برترین رشته ی مهندسی) مهندسی صنایع( برترین رشته ی مهندسی) Topics
  • گروه طراحی unigraphics گروه طراحی unigraphics Topics
  • دوستداران معلم شهید دکتر شریعتی دوستداران معلم شهید دکتر شریعتی Topics
  • قرمزته قرمزته Topics
  • مبارزه با اسپم مبارزه با اسپم Topics
  • حسین پناهی حسین پناهی Topics
  • سهراب سپهری سهراب سپهری Topics
  • 3D MAX 3D MAX Topics
  • سیب سرخ حیات سیب سرخ حیات Topics
  • marine trainers marine trainers Topics
  • دوستداران بنان دوستداران بنان Topics
  • ارادتمندان جليل شهناز و حسين عليزاده ارادتمندان جليل شهناز و حسين عليزاده Topics
  • مکانیک ایرانی مکانیک ایرانی Topics
  • خودرو خودرو Topics
  • MAHAK MAHAK Topics
  • اصفهان نصف جهان اصفهان نصف جهان Topics
  • ارومیه ارومیه Topics
  • گیلان شهر گیلان شهر Topics
  • گروه بچه های قمی با دلهای بیکران گروه بچه های قمی با دلهای بیکران Topics
  • اهل دلان اهل دلان Topics
  • persian gulf persian gulf Topics
  • گروه بچه های کرد زبان انجمن نواندیشان گروه بچه های کرد زبان انجمن نواندیشان Topics
  • شیرازی های نواندیش شیرازی های نواندیش Topics
  • Green Health Green Health Topics
  • تغییر رشته تغییر رشته Topics
  • *مشهد* *مشهد* Topics
  • دوستداران داريوش اقبالي دوستداران داريوش اقبالي Topics
  • بچه هاي با حال بچه هاي با حال Topics
  • گروه طرفداران پرسپولیس گروه طرفداران پرسپولیس Topics
  • دوستداران هامون سینمای ایران دوستداران هامون سینمای ایران Topics
  • طرفداران "آقایان خاص" طرفداران "آقایان خاص" Topics
  • طرفداران"مخربین خاص" طرفداران"مخربین خاص" Topics
  • آبی های با کلاس آبی های با کلاس Topics
  • الشتریا الشتریا Topics
  • نانوالکترونیک نانوالکترونیک Topics
  • برنامه نویسان ایرانی برنامه نویسان ایرانی Topics
  • SETAREH SETAREH Topics
  • نامت بلند ایـــران نامت بلند ایـــران Topics
  • جغرافیا جغرافیا Topics
  • دوباره می سازمت ...! دوباره می سازمت ...! Topics
  • مغزهای متفکر مغزهای متفکر Topics
  • دانشجو بیا دانشجو بیا Topics
  • مهندسین مواد و متالورژی مهندسین مواد و متالورژی Topics
  • معماران جوان معماران جوان Topics
  • دالتون ها دالتون ها Topics
  • دکتران جوان دکتران جوان Topics
  • ASSASSIN'S CREED HQ ASSASSIN'S CREED HQ Topics
  • همیار تاسیسات حرارتی برودتی همیار تاسیسات حرارتی برودتی Topics
  • مهندسهای کامپیوتر نو اندیش مهندسهای کامپیوتر نو اندیش Topics
  • شیرازیا شیرازیا Topics
  • روانشناسی روانشناسی Topics
  • مهندسی مکانیک خودرو مهندسی مکانیک خودرو Topics
  • حقوق حقوق Topics
  • diva diva Topics
  • diva(مهندسین برق) diva(مهندسین برق) Topics
  • تاسیسات مکانیکی تاسیسات مکانیکی Topics
  • سیمرغ دل سیمرغ دل Topics
  • قالبسازان قالبسازان Topics
  • GIS GIS Topics
  • گروه مهندسین شیمی گروه مهندسین شیمی Topics
  • فقط خودم فقط خودم Topics
  • همکار همکار Topics
  • بچهای باهوش بچهای باهوش Topics
  • گروه ادبی انجمن گروه ادبی انجمن Topics
  • گروه مهندسین کشاورزی گروه مهندسین کشاورزی Topics
  • آبروی ایران آبروی ایران Topics
  • مکانیک مکانیک Topics
  • پریهای انجمن پریهای انجمن Topics
  • پرسپولیسی ها پرسپولیسی ها Topics
  • هواداران رئال مادرید هواداران رئال مادرید Topics
  • مازندرانی ها مازندرانی ها Topics
  • اتاق جنگ نواندیشان اتاق جنگ نواندیشان Topics
  • معماری معماری Topics
  • ژنتیکی هااااا ژنتیکی هااااا Topics
  • دوستداران بندر لیورپول ( آنفیلد ) دوستداران بندر لیورپول ( آنفیلد ) Topics
  • group-power group-power Topics
  • خدمات کامپپوتری های نو اندیشان خدمات کامپپوتری های نو اندیشان Topics
  • دفاع دفاع Topics
  • عمران نیاز دنیا عمران نیاز دنیا Topics
  • هواداران استقلال هواداران استقلال Topics
  • مهندسین عمران - آب مهندسین عمران - آب Topics
  • حرف دل حرف دل Topics
  • نو انديش نو انديش Topics
  • بچه های فیزیک ایران بچه های فیزیک ایران Topics
  • تبریزیها وقزوینی ها تبریزیها وقزوینی ها Topics
  • تبریزیها تبریزیها Topics
  • اکو سیستم و طبیعت اکو سیستم و طبیعت Topics
  • >>سبزوار<< >>سبزوار<< Topics
  • دکوراسیون با وسایل قدیمی دکوراسیون با وسایل قدیمی Topics
  • یکم خنده یکم خنده Topics
  • راستی راستی Topics
  • مهندسین کامپیوتر مهندسین کامپیوتر Topics
  • کسب و کار های نو پا کسب و کار های نو پا Topics
  • جمله های قشنگ جمله های قشنگ Topics
  • مدیریت IT مدیریت IT Topics
  • گروه مهندسان صنایع گروه مهندسان صنایع Topics
  • سخنان پندآموز سخنان پندآموز Topics
  • مغان سبز مغان سبز Topics
  • گروه آموزش مهارت های فنی و ذهنی گروه آموزش مهارت های فنی و ذهنی Topics
  • گیاهان دارویی گیاهان دارویی صنایع غذایی شیمی پزشکی داروسازی

جستجو در ...

نمایش نتایجی که شامل ...


تاریخ ایجاد

  • شروع

    پایان


آخرین بروزرسانی

  • شروع

    پایان


فیلتر بر اساس تعداد ...

تاریخ عضویت

  • شروع

    پایان


گروه


نام واقعی


جنسیت


شماره موبایل


محل سکونت


تخصص ها


علاقه مندی ها


عنوان توضیحات پروفایل


توضیحات داخل پروفایل


رشته تحصیلی


گرایش


مقطع تحصیلی


دانشگاه محل تحصیل


شغل

209 نتیجه پیدا شد

  1. سلام به همه دوستان عزیز . شما می توانید از این به بعد مقالات خود را در این پست دریافت کنید . همچنین از دوستان تقاضا می شود که مقالات برای سهولت در جست و جو در این پست قرار دهند . با تشکر امیر رضا حدادی آملی
  2. توجه : برداشت از مطالب این تاپیک تنها با ذکر منبع آن مجاز می باشد. ( [Hidden Content] ) مقدمه بیومتریال یا ماده زیستی - پزشکی یک ماده مصنوعی است که برای جایگزین سازی یا تعویض بخشی از بدن انسان یا موجود زنده یا به منظور کارکردن در تماس نزدیک با بافت زنده استفاده می شود. به عبارت دیگر بیو متریال ماده ای است که در بدن موجود زنده بی اثر و از نظر داروشناسی خنثی است و برای کاشتن در سیستم های زنده یا استفاده همراه با آن ها طراحی گردیده است. موارد استفاده از بیومتریال در جایگزین سازی و تعویض اعضاء و اندام هایی از بدن است که بر اثر بیماری یا آسیب، کاربری خود را از دست داده اند، تا از این طریق جراحت یا بیماری اعضاء مذکور التیام پذیرد، کاربری و عمل آنها اصلاح شود و ناهنجاری یا وضعیت غیر طبیعی آن ها تصحیح گردد. بیومتریال های مصرفی در چهار گروه فلزات و آلیاژها، پلیمرها، بیوسرامیک ها و کامپوزیت ها دسته بندی می شوند و رفتار و خواص شیمیایی، فیزیکی- مکانیکی و امثال آن و نیز زیست سازگاری آن ها اهمیت اساسی دارد. زیست سازگاری شامل پذیرش کاشتنی مصنوعی توسط بافت بدن و به طور کلی توسط بدن انسان است. ماده زیست سازگار ساختار اطراف خود را تحریک نمی کند و حساسیت ایجاد نمی نماید، به ایجاد واکنش متقابل چون آماس و التهاب از طرف بافت اطراف دامن نمی زند، واکنش های حساسیت زایی را تحریک نمی کند و سبب ایجاد سرطان نمی شود. امروزه کاربرد مواد پلیمری در ساخت پلاستیک های مورد مصرف در تکنولوژی پزشکی بی نهایت متنوع است. از مفصل ران و لگن و پای کامل مصنوعی گرفته تا دندان مصنوعی و تجهیزات کمک بینایی نظیر عدسی چشمی یا لنز و ... . همچنین توسعه اخیر در مورد کارگذاری لوازم کمک پزشکی ساخته شده از پلاستیک های ویژه که بدون اثر جانبی به تدریح جذب بدن می شوند و نیازی به برداشت آن توسط عمل جراحی نیست و نیز کاربرد نخ های فوق العاده مقاوم در مقابل پارگی و اغلب در ابعاد میکروسکوپی و از جنس پلی استر، پلی آمید و یا پلاستیک های مشابه که در جراحی چشم، برای بخیه قرنیه استفاده می شود، نشان دهنده پیشرفت های حاصله در زمینه استفاده از مواد پلاستیکی در مهندسی پزشکی می باشد. در این مجموعه بدون بیان نکات تخصصی ساخت بایو متریال ها، کاربرد این مواد در ساخت اندام های مصنوعی بدن به اختصار مورد بررسی قرار می گیرد.
  3. مقدمه ( Introduction ) : رنگ کردن پلاستیک ها در حالت مذاب یکی از مهمترین کارهای انجام شده برای افزودن خواص مناسب و جدید به رزین های پلیمری است ؛ که به تولید کننده این امکان را می دهد که بتواند تولیدات خود را بهتر به فروش برساند . اضافه نمودن مواد رنگی ، نه تنها موجب فروش بیشتر تولیدات رنگ شده می شود ، بلکه باعث به وجود آمدن برخی از خواص دیگر مانند دوام بیشتر در برابر اشعه ی UV ، در محصول تولیدی می شود . علاوه بر این ، رنگ کردن در حالت مذاب معمولاً نیاز به مراحل جداسازی ( Separate ) ، خروج از خط تولید ( off-line ) و رنگ زنی ( painting step ) را ندارد و بدین صورت هزینه ی کلی تولید کاهش می یابد . سابقاً ، سیستم رنگ با زمینه ی پلاستیک آمیخته می شد ، به هرحال ، سیستم رنگ بخش جدایی ناپذیر ماده می شد و امکان داشت که موجب دگرگونی در مهندسی، عملکرد و خواص فرآیندی ماده بشود که این امر در طی تولید و فرمول بندی مواد جدید ، مطلوب نبود . و رنگ زنی صراحتاً به عنوان یک مشکل برای مصرف کننده و همچنین یک عامل منحرف کننده برای کسی که کار فرمولاسیون پلاستیک های جدید را بر عهده داشت ، محسوب می شد . این متخصص کار فرمولاسیون ( کسی که معمولاً در مورد نکات عمیق علم پلیمر آموزش ندیده است ) برای انتخاب یک رنگ مناسب و با قیمت اقتصادی ، انتخاب می شود و این باعث بروز مشکلاتی می شود . در واقع وظیفه ی این متخصص هنگامی که پلیمرها آمیخته شده و تشکیل آلیاژ می دهند ، بحرانی تر می شود . ( در هنگام کار با این پلیمرهای آلیاژی پرکاربرد ، حتی تغییر کوچکی در ترکیب شیمیایی باعث تغییر خواص پلیمر می شود . ) هدف این مقاله ، بالا بردن اطلاعات خواننده در مورد رنگ های مورد نیاز برای ساخت سیستم های مناسب پلیمری است . همچنین ما در مورد انواع اصلی و عمده ی عوامل رنگ زای مناسب برای استفاده در آمیزه های پلیمری پرکاربرد و آلیاژهای پلیمری ، صحبت می کنیم . انواع اصلی عوامل رنگ زا ( The major classes of colorants ) : عوامل رنگ زای ( colorants ) مورد استفاده درپلاستیک ها به دو گروه بسیار گسترده تقسیم می شود که شامل پیگمنت ها ( pigment ) و رنگ ها ( Dyes ) می شوند . تعریف پیگمنت : پیگمنت یک عامل رنگ زا است که علاقه ای به حل شدن در زمینه ی پلیمری ندارد . تعریف رنگ : رنگ عامل رنگ زایی است که به صورت حل شده در داخل زمینه ی پلاستیک قرار می گیرد . بنابر تعریفات انجام شده پیگمنت ها مانند یک فاز مجزا در داخل پلاستیک قرار می گیرند و بنابراین در بین پیگمنت و زمینه ی پلاستیکی یک مرز بین فازی وجود دارد که این مساله جای تامل دارد و ممکن است که مشکلات مصرف کننده نیز از همین مرزها ایجاد شده باشد . پیگمنت های غیر آلی ( Inorganic pigments ) : پیگمنت های غیرآلی ، نمک های فلزی و اکسیدها هستند . این عوامل رنگ زا می توانند یک لایه از یک جسم پلاستیکی را با رفتار قابل پیش بینی رنگی کنند . اکثر این عوامل رنگ زا دارای ذراتی با ابعاد میانگین بین 0/2 تا 1/0 میکرون هستند . تولید کنندگان ، رنگ های مرغوب را با زدودن ذرات بالاتر از 5 میکرون ، تولید می کنند . این ذرات با ابعاد بالاتر از 5 میکرون باعث آلگومره شدن رنگ می شوند . پیگمنت های غیرآلی به جز چند استثناء ، مواد خام ارزان قیمت هستند که در جدول 1 نشان داده شده اند . به خاطر دوام نسبتاً پایین این رنگ ها ، این پیگمنت ها همیشه بهترین کیفیت را ندارند . تعدادی از خواص خوب که ممکن است درپیگمنت های غیرآلی باشد در زیر آورده شده است : 1 ـ آسانی در تهیه ی پودر این پیگمنت ها ( انرژی نسبتاً کمی برای شکستن ذرات پیگمنت ، پوشش دهی باپلاستیک ها و یکنواخت سازی ذرات آنها مورد نیاز است ) 2 ـ مقاومت گرمایی و مقاومت به هوازدگی خوب 3 ـ کوچک بودن در عین واکنش پذیری قطعاً در این میان استثناهایی وجود دارد که به دلیل اینکه از حد حوصله ی خواننده خارج است ، از آنها می گذریم مثلاً : واکنش پذیری یک مشکل پنهان در هر نوع سیستم پلیمری است . اکسیدهای فلزی ساده : چندین عامل رنگ زای ارزان قیمت که سازگاری خوبی باطیف وسیعی از انواع پلیمرها دارند ، ساختار ساده ای دارند . آنها تنها اکسیدهای فلزی ساده هستند . تیتانیم دی اکسید ( Titanium Dioxide ) : تیتانیم دی اکسید که به آن تیتانیا نیز گفته می شود ، گران ترین و پرکاربردترین پیگمنت مولد رنگ سفید است که در جدول 1 آورده شده است . در اکثر کشورها ، تقریباً تمام تیتانیای مورد استفاده از معادن و به وسیله ی « فرآیند کلرید » به دست می آید . اگرچه TiO2 را یک ماده ی خنثی می دانیم ، ولی کریستال های این ماده دارای نقص هستند . و یک اکسیژن از بین 100000 عدد اکسیژن در داخل ساختار وجود ندارد . این عیب باعث می شود که هر ذره بی تیتانا ( با ابعاد بین 0/2 الی 0/3 میکرون ) یک ناحیه ی واکنش پذیر (+) Ti در روی سطح یا نزدیک به سطح خود داشته باشد . در طی « فرآیند کلرید » تعدادی از این نواحی با یون های کلرید پیوند می دهند . که این پیوند میان ( +) Ti و (-) cl می تواند مشکلات موجود را در برخی از آمیزه ها و آلیاژهای پلیمری ، دو برابر کند . یون های تیتانیم می توانند با گستره ی وسیعی از مواد آلی واکنش داده و تیتانات آلی ( organictitanates ) ایجاد کنند که این تیتانات آلی می تواند هر نوع واکنشی را تسریع دهد . برای مثال ، شیمیدان هایی که در زمینه ی پلیمر کار می کنند از تیتانات های آلی برای تسریع واکنش پلیمریزاسیون پلیمرها استفاده می کنند . به علاوه ، یون های کلر ، باعث افزایش تخریب و از هم پاشیدگی پلی کربنات ( PC ) می شوند . از این رو تعدادی از گریدهای تیتانا برای استفاده در آمیزه ها و آلیاژهای محتوی پلی کربنات مناسب نمی باشند . برای به حداقل رساندن واکنش پذیری این پیگمنت مهم ( TiO2 ) ، تولید کننده ها انواع خاصی از پلاستیک ها را تولید کرده اند که این پلاستیک ها با خواص منحصر به فردشان ، نواحی واکنش پذیر را با آلومینا ، سیلیکا و یا سیال سیلیکونی ( Silicone fluid ) پوشش می دهند . تیتانا دارای دو حالت کریستالی روتیل ( rutile ) و آناتاس ( anatase ) است که هر دو حالت کریستالی آن سختی ( در مقیاس موهس ) بالایی دارند و جزء ساینده ها به حساب می آیند . به خاطر سختی بالای این ذرات ، مشکلاتی به وجود می آید مثلاً ذرات پیگمنت این ماده می توانند الیاف شیشه ای را ببرند و به اندازه ی زیادی از استحکام کششی آلیاژها و آمیزه های ترموپلاست تقویت شده با الیاف شیشه بکاهند . قرمز اکسید آهنی مصنوعی ( Synthetic Iron Oxide Reds ) : پیگمنت های قرمز رنگ حاصل از اکسید آهن مصنوعی از لحاظ شیمیایی فرمول Fe2O3 دارند . این پیگمنت ها ، مقدار زیادی از نور تابیده شده به آنها را جذب کرده و حالت کدر مانند دارند ، همچنین این پیگمنت ها نسبتاً ضعیف و دارای حالت چرکین هستند . البته این رنگ یا گستره ی وسیعی از رنگ ها را مهیا می کند . عامل (3+) Fe به عنوان اسید لوییس عمل می کند و حتی غلظت های کم این پیگمنت برای پلی وینیل کلراید ( PVC ) ایجاد مشکل می کند ، و برای آمیزه ها و آلیاژهای پلیمری محتوی PVC مناسب نیست . در غلظت های بالاتر ، این پیگمنت ممکن است بر روی مواد پلی کربناتی ( PC ) نیز تاثیرات مضر بگذارد کرم ( III ) اکسید ( Chrome (III)Oxide ) : کرم ( III ) اکسید یک رنگ تیره ی سبز زیتونی ایجاد می کند که این پیگمنت اگر چه ضعیف است ولی دارای پایداری گرمایی و مقاومت در برابر هوازدگی عالی است . به دلیل اینکه دیگر انواع پیگمنت های سبز رنگ با استحکام بالاتر و حالت تمیزتر ( از لحاظ جلوه ی رنگ ) در دسترس است ، پیگمنت های کرم اکسیدی معمولاً برای کاربردهای بیرونی اختصاص یافته است . پیگمنت های اکسید فلزی مخلوط ( Mixed Metal Oxide Pigments ) : اکسیدهای فلزی مخلوط ( MMO ) یک دسته ی بزرگ از پیگمنت های کلسیته هستند . ( مرحله ی پایانی تهیه ی آنها مربوط به گرم کردن آرام این مواد در دمای 1100 درجه سانتیگراد است ) که ابتدایاً برای سرامیک ها تولید شدند . این مواد مقاومت در برابر هوازدگی عالی و پایداری گرمایی خیلی خوبی دارند . به عنوان یک گروه ، آنها کمترین واکنش پذیری را دارند ؛ برای مثال علاقه ی زیادی به استفاده از این مواد با مواد شامل گروه های وینیل است . ولی این پیگمنت ها ، ثبات رنگی پایینی دارند و بر اساس قاعده ، این پیگمنت ها نیز ساینده ی الیاف شیشه ای هستند . در جدول 1 خواص تعدادی از پیگمنت های متداول اکسید فلزی مخلوط نشان داده شده است . بسیاری از پیگمنت های MMO شامل مقدار قابل توجهی ( تقریباً 10 درصد ) آنتیموان هستند . آنتیموان ماده ای است که به وسیله ی برخی از سازمان های تنظیمی به عنوان یک فلز سنگین شناخته شده است . به خاطر اینکه آنتیموان یک فلز سنگین است ، امروزه نوع بدون آنتیموان از این پیگمنت نیز به وسیله ی برخی از منابع تولیدی ، مهیا شده است ولی قیمت این نوع از پیگمنت ها نسبت به حالت قبلی خود تقریباً 25 ـ 50 درصد بیشتر است . در گذشته ، در ساخت پیگمنت های MMO مشکلاتی ناشی از بدی پراکندگی و یکنواختی وجود داشت که باعث به وجود آمدن ذرات ناخواسته در رنگ می شد اما اخیراً ، تمام تولید کنندگان عمده ی این بخش ، الیاف پلی آمید را به عنوان یک بازار پر منفعت انتخاب کردند و پراکندگی و یکنواختی ذرات را بهبود داده اند و توانسته اند مشکلات ناشی از یکنواختی را بر طرف کنند . یگمنت های فلز سولفیدی ( Metal Sulfide pigments ) : این گروه شامل پیگمنت های روی سولفید ( ZnS) و پیگمنت های بر پایه ی کادمیوم می شود . ZnS یک پیگمنت سفید رنگ است که جایگاه ویژه ای در رنگرزی رزین های تقویت شده با شیشه دارد . پیگمنت های کادمیومی یک گروه از پیگمنت های رنگی روشن ( از زرد گرفته تا نارنجی و قرمز ) را تولید می کند . بعضی از خواص پیگمنت های فلز سولفیدی در جدول 1 آورده شده است . روی سولفید سفید ZnS:(Zinc Sulfide white) یک پیگمنت سفید رنگ است که تقریباً دوام رنگ و ماتی آن نصف پیگمنت های تیتانیایی است . دو خاصیت ویژه ی آن عبارت اند از : 1 ـ سختی ( در مقیاس موهس ) این مواد کم است و این باعث می شود که بتوان از این مواد در رزین های تقویت شده با الیاف شیشه استفاده کرد . 2 ـ رفتار جذبی بسیار کمتر در ناحیه ی UV نزدیک ، نسبت به پیگمنت های تیتانایی و به همین دلیل ، این ماده را می توان با تعدادی از رنگهای فلیورسنت استفاده کرد و بهترین خواص فلیورسنتی را دریافت کرد . Zn(+2) ، همانگونه که در بالا گفته شد یک اسید لوییس است ؛ بنابراین اکثر کسانی که وظیفه ی فرمولاسیون رنگ ها را بر عهده دارند ، از استفاده ی ZnS در آمیزه ها و آلیاژهای دارای پلی کربنات جلوگیری می کنند . کادمیوم سولفید و سولفوسلنیدها ( Cadmium sulfides and sulfoselenides ) : CdS کلسیته یک پیگمنت با رنگ نارنجی روشن متمایل به زرد است که ثبات رنگی عالی و پایداری گرمایی بسیارخوبی دارد . این نوع پیگمنت در اتمسفر مرطوب دوام نیاورده و پیگمنت مناسبی برای کاربردهای بیرونی ( فضای آزاد ) نیست . با ترکیب zn,cd ( درصد zn بیش از 12 درصد باشد ) می توان زرد کم رنگ و زرد لیمویی را به دست آورد . جایگزینی تعداد کمی از اتم های گوگرد با سلنیوم ، ناحیه ی رنگ تولیدی توسط این پیگمنت را به ناحیه ی قرمز شیفت می دهد . اگر کل اتم های گوگرد با سلنیوم جایگزین شوند ، باعث به وجود آمدن cdse می شوند که یک پیگمنت خرمایی رنگ مایل به قرمز ( maroon pigment deep )تولید می کند . پیگمنت های پایه کلادمیومی به صورت سنتی و به طور وسیع در رزین های مهندسی مانند پلی آمید ، پلی آمید 6/6 ، پلی کربنات ، پلی استرترموپلاست و آلیاژها و آمیزه هایشان ، استفاده می شود . به هر حال کادمیوم یک فلز سنگین است که این مورد توسط همه ی سازمان های نظارتی تصدیق شده است . ( برای مثال ، cd یکی از 4 فلز سنگین است که در اکثر قوانین دولتی مربوطه ، به آن اشاره شده است ) از این رو ، مواد مهندسی دارای فرمولاسیون بدون cd در حال ساخته شدن هستند و به طور یقین پیگمنت های پایه کادمیومی با پیگمنت های بی خطرتر جایگزین می شوند ولی پروسه ی جایگزینی آنها آهسته است . اگر چه با رعایت مسیله ی خنثایی شیمیایی ، پیگمنت های کادمیوم سولفیدی می توانند با (2+) cu و درطی فرآیند ذوب ، واکنش دهند و مس سولفید مشکی رنگ را تولید کنند . این رنگ مخلوط شده در حالتی که پیگمنت اولیه زرد رنگ باشد ، رنگ سبز و قرمز را شیفت داده و تولید رنگ قهوه ای می کند . یک منبع بالقوه از یون های (2+) cu، مس موجود در تثبیت کننده ی گرمایی برای پلی آمید است . پیگمنت های الترامارین ( Ultramarine pigments) : این پیگمنت ها دارای ترکیب شیمیایی سدیم ـ آلومینیوم ـ سولفو ـ سیلیکات ( sodium - aluminum-sulfo-silicates ) هستند . این گروه شامل پیگمنت هایی با ثبات گرمایی و ثبات رنگی بالایی هست ، متاسفانه ، مقاومت شیمیایی این مواد با حمله ی اسید یا باز کاهش می یابد . از این رو این مواد را نمی توان در مکان های بیرونی ( فضاهای روباز ) استفاده کرد . البته یک نوع از این پیگمنت ها ساخته شده است که به وسیله ی یک لایه ی سیلیسی پوشش داده می شود . این لایه موجب محافظت پیگمنت در برابر عوامل شیمیایی می شود . قیمت این نوع از پیگمنت ها اندکی بیشتر از انواع معمولی آن است . یک مشکل طبیعی از رنگ های الترامارین ، سنگ لاجورد ( lapis lazuli ) است . گستره ی رنگی پیگمنت های الترامارین از رنگ آبی نسبتاً تیره تا بنفش و صورتی است . یک مثال خانگی از رنگ آبی سیر که حالتی کاملاً تیره دارد ، بطری های شیر منیزی ( مایع شیری رنگی که هیدورکسید منیزیم است و به عنوان ضد اسید و ملین به کار می رود ) است . گریدهای استانداردی از پیگمنت های الترامارین ( بدون پوشش ) با رزین های پلی استات واکنش می دهند و مشاهده شده است که به واسطه ی این واکنش ها درون زمینه ی رزینی ، توده هایی از این نوع رنگ در پلی کربنات و پلی آمید 6/6 مشاهده شده است . تعدادی از خواص پیگمنت های الترامارین در جدول 1 آمده است . ادامه دارد ...... منبع:coloring Technology for plostics /Ronald M.Harrisi Edi
  4. ژل موي سر يكي از ابزار هاي شكل دادن به مو به شمار مي آيد. با استفاده از اين فراورده مي توانيد مدل دلخواه خود را براي مدت نسبتا طولاني بر روي مو تثبيت نمائيد. محصولات مدل دهنده مو، همگی از نظر شیمیایی پلیمرهای حل شده در حلال مایع هستند. وظیفه پلیمرهای موجود در این ترکیبات آن است که رشته های مو را به هم متصل کند، ضمن آنکه، پوشش پلیمری محیط بر تارهای به هم چسبیده مو، باعث افزایش حجم کلی آنها می گردد. نحوه اتصال تار های مو توسط این فراورده ها معمولا به دو صورت است: 1- اتصال جانبی (پهلو به پهلو)ی تار های مو که اصطلاح جوش خطی (Seam weld) به آن اطلاق می گردد. 2- اتصال نقطه ای (یا متقاطع) تارهای مو که جوش نقطه ای (Spot weld) نام دارد. در این حالت تارهای مو، در یک نقطه، یکدیگر را قطع می کنند. فراورده مدل دهنده مو، باید به گونه ای توسط تولید کننده طراحی و بوسیله مصرف کننده به کار برده شود که اتصال تارهای مو، بیشتر از نوع جانبی باشد. زیرا اتصال تارهای مو، به این شیوه، علاوه حجم بیشتر، آنها را به شکل ملایمتری در کنار هم نگاه داشته و آسیب کمتری به كوتیکول وارد می کند . در حال حاضر ژلهای مو به دو دسته کلی تقسیم بندی می شوند: Micro gels ژلهای روغنی (یا میکرو ژل ها) به صورت امولسیون های شفاف روغن در آب عرضه می شوند ( قطرات روغن آنقدر کوچکند که امولسیون شفاف به نظر می رسد). اين نوع از ژلها بيشترجهت ایجاد درخشندگی و گره گشایی از مو در هنگام برس و یا شانه کردن استفاده می شوند True gels ژلهای پلیمری ( ژلهای حقیقی) مخلوطی از آب، یک عامل ژل کننده و یک پلیمر تثبیت کننده با وزن ملکولی بالا هستند . وقتی که این مواد روی مو قرار می گیرند، رشته های مو با مخلوط آب و پلیمر پوشانده می شوند. سپس آب از روی مو تبخیر شده و لایه نازکی از پلیمر روی آن را می پوشاند. این پلیمر باید پوششی سبک، قابل انعطاف و شفاف روی مو بر جای گذارد و درخشندگی خاصی به آن بدهد ضمن آنکه که گره ها و الکتریسته ساکن مو تاحدی کاهش يابد. روشی برای استفاده موي خود را ابتدا با شامپوي مناسب شستشو دهيد. آب اضافي را با استفاده از حوله(با روش گذاشتن و برداشتن) از روي مو بزدائيد. مقداري ژل در كف دست خود قرار داده و پس از پخش آن بر روی دست به طور يكنواخت روي مو پخش نمائيد. دو نكته در مورد ژلها: ژل می تواند هم بر روی موی خشک و هم بر روی موی تر استفاده شود. ژل بر روی موی مشکی جلوه بیشتری دارد. • در صورتي كه مدل فر، مورد نظرتان است با استفاده از نوك انگشتان فر دلخواه خود را به مو بدهيد. • براي صاف نمودن، رشته های مو را بین دو دست قرار داده و دستها را در حالیکه فشار كمي اعمال مي كنید به سمت پائين حركت دهید .
  5. دانلود رایگان کتابچه روش های جداسازی ضایعات پلاستیک و روش های سریع شناسایی پلاستیک ها منبع: شرکت پویا پلیمر امیرکبیر
  6. *mishi*

    پلي يورتان

    الاستومرهاي پلي يورتاني، خانواده‌اي از كوپليمرهاي توده‌اي بخش شده است كه كاربردهاي مهمي در زمينه‌هاي گوناگون صنعتي و پزشكي پيدا كرده است. اولين پلي يورتان، از واكنش دي‌ايزوسيانات آليفاتيك با دي‌آمين به‌دست آمد. اتو باير و همكارانش اولين بار اين پلي‌يورتان را معرفي نمودندکه به شدت آبدوست بود و بنابراين به عنوان پلاستيك يا فيبر نمي‌توانست مورد استفاده قرار گيرد. واكنش بين دي‌ايزوسيانات‌هاي آليفاتيك و گليكول‌ها منجر به توليد پلي يورتاني با خصوصيات پلاستيكي و فيبري گرديد. به دنبال آن، با استفاده از دي‌ايزوسيانات آروماتيك و گليكول‌هاي با وزن مولكولي بسيار بالا، پلي‌ يورتاني به‌دست آمد كه خانواده مهمي از الاستومرهاي ترموپلاستيك به شمار مي‌رود. خواص يورتانها از مواد ترموست بسيار سخت تا الاستومرهاي نرم تغيير مي‌كند. از پلي يورتانهاي ترموپلاستيك، در ساخت وسايل قابل كاشت بسيار مهمي استفاده مي‌شود، چرا كه داراي خواص مكانيكي خوب نظير استحكام كششي، چقرمگي، مقاومت به سايش و مقاومت به تخريب شدن، به علاوه زيست سازگاري خوب مي‌باشند كه آنها را در گروه مواد مناسب جهت كاربردهاي پزشكي قرار مي‌دهد. كاربردهاي پلي يورتان‌ها با استفاده از پلي اترها به عنوان پلي‌ال، در سنتز پلي يورتان مي‌توان كاشتني‌هاي طولاني مدت تهيه نمود، كه در قلب مصنوعي، کليه مصنوعي، ريه مصنوعي، هموپرفيوژن، لوزالمعده مصنوعي، *****هاي خوني، کاتترها، عروق مصنوعي، باي‌پس سرخرگ‌ها يا سياهرگ‌‌ها، کاشتني‌هاي دندان و لثه، بيماريهاي ادراري، ترميم زخم، رساندن يا خارج كردن مايعات، نمايش فشار عروق، آنژيوپلاستي، مسدود کردن عروق، جراحي عروق آئورت و كرونري، دريچه‌هاي قلب ‌سه‌لتي و دولتي كاربرد دارند. در صورتي كه از پلي اترها به عنوان پلي‌ال، در سنتز پلي يورتان استفاده شود، پلي يورتان‌هاي زيست تخريب پذير مدت تهيه مي‌شود كه به طور مثال در کانال هدايت بازسازي عصب، ساختارهاي قلبي –عروقي، بازسازي غضروف مفصل ومنيسک زانو، براي تعويض وجايگزيني استخوان اسفنجي، در سيستم‌هاي رهايش کنترول شده دارو و براي ترميم پوست كاربرد دارد. شكل (1) برخي از وسايل و ايمپلنت‌هاي پلي‌يورتاني مورد استفاده در پزشكي را نشان مي‌دهد. تاثير ساختار شيميايي و مورفولوژي سطح روي خون سازگاري پلي يورتان در اواخر سال 1980 تعدادي از دانشمندان، شيمي، ساختار و مورفولوژي سطح پلي‌يورتان‌ها را مورد بررسي قرار دادند و به تدريج روش‌هاي جديد پوشش دهي سطح به‌همراه پيوندهاي مواد ديگر به سطح پلي‌يورتان‌ها، با هدف بهبود خونسازگاري ابداع شد. در سالهاي اخير، ترکيب شيميايي پلي‌يورتان‌ها جهت بهبود خونسازگاري با تغييرات بسيار زيادي همراه شده است. از جمله اين موارد سنتز پلي‌يورتان يا پلي‌يورتان ِيورا با قسمت‌هاي نرم آبدوست است. «Cooper»، نيز در مورد ارتباط بين شيمي پلي‌ال‌ها و خون‌سازگاري پلي‌يورتانها، تحقيقاتي را برروي نمونه‌هاي مختلف پلي‌يورتانها با پلي‌ال‌هاي متفاوت نظير PEO، PTMO، PBD (پلي‌بوتادين) و PDMS انجام داد. اين پلي‌يورتان‌ها به روش پليمريزاسيون دو مرحله‌اي تهيه شدند و بر روي لوله‌‌هاي پلي‌اتيلني پوشش‌دهي شده و سپس درون بدن سگ قرار گرفتند تا پاسخ لخته‌زايي آنها مشخص گردد. پلي‌يورتان با پلي‌ال PDMS کمترين لخته‌زايي را نسبت به نمونه‌هاي ديگر نشان داد. طبيعت آبگريز PDMS باعث بهبود آبگريزي سطح پلي‌يورتان پايه PDMS و در نتيجه توجيهي براي بهبود خون‌سازگاري آن نسبت به ساير موارد مي‌شود و ميزان چسبندگي اوليه پلاکت‌ها با افزايش آبدوستي پلي‌ال‌ها افزايش مي‌يابد. بنابراين بايد گفت که خون‌سازگاري پلي‌يورتان‌ها بستگي زيادي به ترکيبات سازنده آن و عوامل مختلف نظير جداسازي ميکروفازها، ناهمگني سطح و آبدوستي سطح خواهد داشت. استفاده از سولفونات يا پوشش‌هايي نظير هپارين در تغيير پاسخ خون به اين مواد نقش بسيار عمده‌اي را ايفا مي‌کنند. محققي به نام Santerre [55]، پلي‌يورتان‌هايي را بر پايه سولفونات سنتز نمود که داراي گروه‌هاي مختلف سولفور(3.1 % - 1.4%) بود. در نمونه‌هاي با گروه‌هاي سولفونات بيشتر زمان لخته‌زايي افزايش يافت. روشهاي بهبود خواص سطحي پلي‌يورتانها با توجه به اينکه خونسازگاري يک بيومتريال بستگي مستقيم به شيمي سطح آن دارد، تغيير در وضعيت سطحي کمک بسيار زيادي در حل مشکلات خون‌سازگاري خواهد نمود. از جمله موادي که در اين مورد نتايج و رضايت بخشي را در بهبود خونسازگاري نشان داده‌اند، ‌مي‌توان به سولفونات پلي‌اتر يورتان، پيوند سطح اکريل آميد و دي اکريل آميد با پلي‌اتر يورتان، اتصال فسفوريل کولين به سطح پلي‌اتر يورتان با استفاده از پرتو UV و پيوند پروپيل سولفات – پروپيلن اکسايد (PEO-SO3)، اشاره نمود. در سالهاي اخير محققان زيادي براي افزايش بهبود خونسازگاري بيومتريال‌ها از پيوند هپارين به سطح آنها استفاده نموده‌اند كه نتايج رضايت‌بخشي نيز به همراه داشته است. يکي از مهمترين مشکلات در اين راه، پيوند يوني هپارين (surfaces bearing ionically bound heparin ) به سطح پلي‌يورتان است. هپارين مي‌تواند بصورت کووالاني با گروههاي آمين يا هيدروکسيل آزاد ايزوسيانات پيوند برقرار سازد. در بين تمام روشهايي که باعث تثبيت هپارين ‌مي‌شود، موثرترين روش استفاده از تابش اکسيژن پلاسماي يونيزه شده است که باعث پيوند با پليمر ‌مي‌شود. نتايج خونسازگاري حاصل از هپارينيزه شدن پلي‌يورتان‌، نشانگر فعاليت کمتر پلاکتها و پروتئين‌هاي پلاسما است که منجر به کاهش تشکيل لخته خون مي‌شود. همچنين چسبندگي سلولهاي تک هسته‌اي و ترشح فاکتور نکروز تومور در تماس با پلي‌يورتان هپارينيزه شده کمتر گزارش شده است. از ديگر راههايي که ‌مي‌توان بدون استفاده از پوشش‌هاي هپاريني به يک پلي‌يورتان خون سازگار دست يافت، پوشش دهي يا تثبيت شيميايي داروهاي ضد لخته زا يا مولکولهايي نظير مشتقات Urookinase ، Prostacyclin، ADPase، Dipyridamol، Glucose و اتمهاي نقره گزارش شده است. پلي‌يورتان‌هاي داراي گروه‌هاي سولفونات، لخته زايي بسيار کمي نسبت به پلي‌يورتان‌هاي معمولي داشت. پلي‌يورتان‌هاي سولفونات شده ترومبين (آنزيم مؤثر براي ايجاد لخته) را مصرف کرده و بر پليمريزه شدن فيبرينوژن تأثير مستقيم مي‌گذارد. ايجاد پيوند کووانسي پپتيد Arg-Gly-Asp (RGD)، با ستون اصلي پليمر نيز يکي ديگر از روش‌هاي بهبود خواص خون‌سازگاري پلي‌يورتان‌ها است كه در نتيجه چسبندگي سلول‌هاي اندوتليال به سطح پليمر افزايش مي‌يابد. تخريب پلي يورتان‌ها همه پليمرها امكان تخريب دارد و پلي يورتان‌ها نيز از اين قاعده مستثني نيست جهت جلوگيري از تخريب پلي يورتان‌ها روش‌‌هاي مختلفي وجود دارد. كه شامل هيدروليز، فتوليز، سلوليز، توموليز، پيروليز (تجزيه در اثر حرارت) وتخريب بيولوژيك، ترك بر اثر استرس محيطي، اكسيد شدن و تخريب بوسيله ميكروب و قارچها مي‌شود. در حالت بيولوژيك تنش محيطي باعث ايجاد ترك مي‌شود كه در نهايت شكست ممكن است به‌وجود آيد و باعث ايجاد تخريب سطحي ويژه در پليمر شود. آنزيم‌ها نيز مي‌توانند باعث تخريب پلي يورتان‌ها شود. تخريب ميكروبي، يك واكنش تجزيه شيميايي است كه به‌وسيله حمله ميكرو ارگانيسم‌ها صورت مي‌گيرد. آنزيم‌ها و قارچ‌ها نيز ممكن است پلي يورتان‌ها را تخريب كند. پيوندهاي مستعد براي تخريب هيدروليتيك در پلي يورتان‌ها، پيوندهاي استري و يورتاني است. استرها به اسيد و الكل تجزيه مي‌شود و پيوندهاي يورتاني در نتيجه تخريب شدن به كرباميك اسيد و الكل هيدروليز مي‌شود. تركيبات مسئول تخريب پليمرها در بدن شامل آب، نمك، پراكسيدها و آنزيمها است. به‌طور كلي مولكولهايي مانند ويتامين‌ها و راديكالهاي آزاد باعث تسريع كردن تخريب مي‌شود. اگر پلي يورتان هيدروفوب باشد تخريب معمولاً در سطح مواد انجام مي‌شود. اگر پلي يورتان‌ها هيدروفيل باشد، آب در توده پليمر وارد شده و تخريب در سرتاسر ماده اتفاق مي‌افتد. تخريب پليمر در مايع Media ( پلاسما و بافت ) به طوركلي شامل مراحل زير است. 1) جذب مديا در سطح پليمر، 2) جذب مديا به توده پليمر، 3) واكنشهاي شيمايي با پيوندهاي ناپايدار در پليمر و 4) نقل و انتقال توليدات تخريب از ماتريكس پليمر و جذب سطحي محصولات تخريب از سطح پليمر. تاثير آبدوستي بر ميزان تخريب پلي يورتان‌هاي يكي از مشكلات اصلي كاشت پلي يورتان‌ها در حالت vivo in تمايل آنها براي آهكي شدن و تخريب شدن است. اكثر ايمپلنت‌هاي پلي يورتاني در حالت in vivoاز طريق هيدروليز تخريب مي‌شود. الاستومرهاي زيست تخريب پذيردر ايمپلنت‌هاي قلبي و عروقي، داربستها براي مهندسي بافت، ترميم غضروف مفصل، پوست مصنوعي و درتعويض و جانشيني پيوند استخوان اسفنجي استفاده مي‌شود. مواد هيدروفيل مانند هيدروژل‌ها، به عنوان سدي براي چسبندگي بافت‌ها استفاده مي‌شود. موادي با هيدروفيلي كم، باعث چسبندگي تكثير سلول‌ها مي‌شود كه براي داربستهاي مهندسي بافت مناسب است. واكنش پلي يورتان زيست تخريب پذير با استئوبلاست‌ها و كندروسيت‌ها و ماكروفاژها كاربرد پليمرهاي زيست تخريب پذير به عنوان يكي از پيشرفت‌هاي عمده در تحقيقات مواد درپزشكي مطرح است. مواد زيست تخريب پذيركاربردهاي بي‌شماري در پزشكي و جراحي دارند واين مواد طوري طراحي شده است كه در حالت in vivo تخريب شود. تصور كلي از زيست سازگاري بر اساس واكنش ميان يك ماده و محيط بيولوژيك است. واكنش بافت‌ها و سلول‌ها در خيلي از موارد بوسيله پاسخ التهابي مشخص مي‌شود. در مهندسي بافت از ماتريس‌ها و داربستهاي زيست تخريب‌پذير پليمري به عنوان حامل سلول براي بازسازي بافت‌هاي معيوب استفاده مي‌شود. به‌طور كلي، ايمپلنت‌ها نبايد باعث پاسخ غيرعادي در بافت‌ها و باعث توليد مواد سمي يا تأثيرات سرطان زائي در بافت شوند. در تحقيقات جديد، پلي يورتان‌هاي زيست تخريب پذير زيست سازگاري مطلوبي از خود نشان مي‌دهد. اين پلي يورتان‌ها هر چند كه باعث فعال شدن ماكروفاژها مي‌شود ولي تأثيرات سمي و سرطان زائي در بدن ندارد. در تحقيقات in vivo، فوم پلي يورتان زيست تخريب پذير،زيست سازگاري مطلوبي را از خود نشان داده است. در يك تحقيق جديد، جهت ارزيابي زيست سازگاري از فوم پلي استر پلي يورتان زيست تخريب پذير با سايز سوراخها 100-400 m استفاده شده و واكنش كندروسيت‌هاي و سلول‌هاي استئوبلاست موش [line Mc3T3-E1] با فوم پلي يورتان زيست تخريب پذير( Degrapol -foam) مورد بررسي قرار گرفته شده است پاسخ سلولي که شامل: رشد، فعاليت سلول‌ها و پاسخ سلولي استئوبلاست‌ها و ماكروفاژها به محصولات تخريب در نظر گرفته شد. سلول‌هاي استئوبلاست‌ها و كندرويست‌ها از موش‌هاي صحرايي نر بالغ جدا شده بود. جهت سنتز اين كوپليمر نيز مقدار برابر از PHB– دي‌ال و پلي کاپرولاکتون دي‌ال در 1 و2 دي كلرو اتيلن حل شده وبه صورت آزئوتروپيكالي به‌وسيله برگشت حلال تحت نيتروژن خشك، سنتز شد. اين پلي استريورتان، يك بخش آمورف و يك بخش كريستالي دارد و همچنين دي ال با PHB تشكيل حوزه‌هاي كريستالي مي‌دهد و دي ال با پلي كاپر.لاكتون تشكيل حوزه‌هاي آمورف مي‌دهد. پس از كشت سلولي، اسكن به‌وسيله ميكروسكوپ الكتروني ( SEM) نشان مي‌دهد كه سلول‌ها در سطح و داخل حفره‌هاي فوم رشد مي‌كند و سلول‌هايي كه در سطح فوم ديده مي‌شود و به صورت يك نمايش سلولي مسطح و چند لايه سلول متلاقي، ديده مي‌شود. نتايج به‌دست آمده نشانگر اين مطلب است كه استئوبلاست‌ها و ماكروفاژها توانايي بيگانه خواري و فاگوسيتوز محصولات تخريب را دارندو محصولات تخريب در غلظت كم، تأثيري در رشد و عملكرد استئوبلاست‌ها نمي گذارد. به‌طور كلي كندروسيت‌ها و استئوبلاست‌ها در فوم زيست تخريب پذير تكثير يافت و فنوتيب‌شان را نگاه داشت. اين مطلب نشان مي‌دهد كه اين داربستها براي مراحل ترميم استخوان مفيد است.
  7. چكيده: پوشش هاي پودري شامل رنگدانه ها و افزودني هاي پخش شده در يك بايندر تشكيل دهنده فيلم ( رزين و عامل پخت) مي باشند كه بصورت پودرهاي ريز توليد مي شوند . چنين پودرهايي با يك تفنگ الكترواستاتيك بر روي سطوح مورد نظر پاشش مي‌گردند. ذرات پودر در تفنگ باردار شده و لايه نازك چسبناكي را روي سطح مورد نظر تشكيل مي‌دهند و پس از عبور از يك كوره در اثر حرارت ، ذرات پودري ذوب شده و پس از ايجاد چسبندگي و باند عرضي يك پوشش سخت ، بادوام و غيرقابل انحلال را ارائه مي‌دهند. لغت پوشش پودري به هر دو پوشش پخت شده و حالت پودري اطلاق مي‌شود و هيچ گونه ابهامي در بكار بردن آن وجود ندارد ولي ترم پودر پوششي فقط براي حالت پودري استفاده مي‌شود . دانلود
  8. مقدمه : نانوکامپوزيتهاي خاک رس / پليمر بهبود فوق‌العاده‌اي در بسياري از خواص فيزيکي و مهندسي پليمرهايي که در آنها از مقدار کمي پرکننده استفاده مي‌شود، ايجاد مي‌کند. اين تکنولوژي که امروزه مي‌تواند کاربرد تجاري نيز پيدا کند، توجه زيادي را طي سالهاي اخير به خود جلب کرده است. عمدة پيشرفت‌هايي که در اين زمينه بوقوع پيوسته، طي پانزده سال اخير بوده و در اين مقاله به اين پيشرفتها و همچنين مزيتها، محدوديتها و برخي مسايل و مشکلات آن خواهيم پرداخت. هر چند اخيراً پيشرفتهاي عمده‌اي در توسعة روشهاي سنتزي و کاربرد آنها در پليمرهاي مهندسي صورت گرفته و تحقيقاتي نيز در مورد خيلي از خواص مهندسي آنها صورت گرفته، ولي با اينحال، براي فهميدن مکانيزم‌هايي که باعث افزايش کارايي در نانوکامپوزيتهاي مرسوم به الياف تقويت مي‌شوند، مزيتها و امتيازاتي دارد، ولي هنوز نتوانسته تاثيري در بازار کامپوزيتهايي که در آنها جزء اليافي درصد بالايي دارد، ايجاد کند. موضوع فناوري نانو طي سالهاي اخير بطور فزاينده‌اي مطرح شده است. عرصة نانو، محدوده‌اي بين ابعاد ميکرو و ابعاد مولکولي است و اين محدوده‌اي است که دانشمندان مواد و شيميدان‌ها در آن به مطالعاتي پرداخته‌اند و اتفاقاً مورد توجه آنها نيز قرار گرفته است، مانند مطالعه در ساختار بلورها. ولي تکنولوژي که توسط علوم مواد و شيمي توسعه يافته و به نانومقياس معروف است، نبايد به عنوان نانوتکنولوژي تلقي شود. هدف اصلي در نانوتکنولوژي ايجاد کاربردهاي انقلابي و خواص فوق‌العاده مواد، با سازماندهي و جنبش آنها و همچنين طراحي ابزار در مقياس نانو مي‌باشد. تعريف نانوکامپوزيت‌هاي خاک­رس / پليمر يک مثال موردي از نانوتکنولوژي هستند. در اين نوع مواد، از خاک­رس‌هاي نوع اسمکتيت (Smectite-type) از قبيل هکتوريت، مونت موريلونيت و ميکاي سنتزي، به عنوان پرکننده براي بهبود خواص پليمرها استفاده مي‌شود. خاک­رس‌هاي نوع اسمکتيت، ساختاري لايه‌اي دارند و هر لايه، از اتمهاي سيليسيم کوئورانيه شده بصورت چهار وجهي که به يک صفحه هشت وجهي با لبه‌هاي مشترک از Al(OH) 3 يا Mg(OH) 2 متصل شده، تشکيل شده است. با توجه به طبيعت پيوند بين اين اتمها، انتظار مي‌رود اين مواد خواص مکانيکي فوق‌العاده‌اي را در جهت موازي اين لايه‌ها نشان دهند ولي خواص مکانيکي دقيق اين لايه‌ها هنوز شناخته نشده‌اند. اخيراً با استفاده از روشهاي مدل‌سازي تخمين زده شده که ضريب يانگ در راستاي لايه‌ها، پنجاه تا چهارصد برابر بيشتر از يک پليمر عادي است. لايه‌ها نسبت صفحه‌اي (aspect ratio) بالايي دارند و هر لايه تقريباً يک نانومتر ضخامت دارد، در حاليکه شعاع آن از سي نانومتر تا چند ميکرون، متفاوت مي‌باشد. صدها يا هزاران عدد از اين لايه‌ها بوسيله يک نيروي واندروالسي ضعيف، روي هم انباشته مي‌شوند تا يک جزء رسي را تشکيل دهند. با يک پيکربندي مناسب اين امکان وجود دراد که رس‌ها را به اشکال و ساختارهاي گوناگوني، درون يک پليمر، به شکل سازمان‌يافته قرار دهيم. در گذشته، عمدتاً به اين شکل از دانه‌هاي رسي براي افزايش کارايي پليمر استفاده مي‌شود که آنها را در حد ميکروني خرد مي‌کردند تا از آنها در توليد پليمرهاي تقويت شده بوسيله پرکننده‌هاي در اندازه ميکرون، استفاده کنند. همانطور که در شکل 1 نشان داده شده. مي‌توان تصور کرد که خواص مکانيکي فوق‌العاده لايه‌هاي منفرد در اجزاي خاک­رس نتوانند در يک سيستم به طرز موثري عمل کنند و پيوندهاي ضعيف بين دو لايه منشاء ايراد در اين کار مي‌باشد. معمول است که از ميزان بالايي از خاک­رس استفاده شود تا به بهبود کافي هر ضرايب دست يابيم، در حاليکه اين کار باعث کاهش استحکام و سختي پليمر مي‌شود. شکل 1: اصول کاربردي متفاوت در ساخت ميکرو و نانوکامپوزيت‌هاي رايج اصلي که در نانوکامپوزيت‌هاي خاک­رس / پليمر رعايت مي‌شود، اين است که نه تنها دانه‌هاي رسي را از هم جدا مي‌کنند، بلکه لايه‌هاي هر دانه را نيز از هم جدا مي‌کنند (همانطور که در شکل 1 بصورت شماتيک نشان داده شده است) با انجام اين عمل، خواص مکانيکي فوق‌العاده هر لايه نيز بطور موثر بکار مي‌آيد و اين در حالي است که در اجزاي تقويت­شده نيز بطور چشمگيري افزايش پيدا مي‌کند، زيرا هر جزء رسي خود از صدها تا هزارات لايه تشکيل شده است. ويژگيها نانوکامپوزيت­هاي خاک رس / پليمر يکي از دستاوردهاي تحقيقات اين است که مشخص شده که بسياري از خواص مهندسي هنگاميکه از ميزان کمي معمولاً چيزي کمتر از 5% وزني، پرکننده استفاده شود، بهبود قابل توجهي مي‌يابد. در پليمرهايي چون نايلون (nylon-6) 6 هرگاه از چنين ميزان کمي پرکننده استفاده شود، يک افزايش 103 درصدي در ضريب يانگ، 49 درصدي در قدرت کشساني و 146 درصدي در مقاومت در برابر تغيير شکل بر اثر گرما، از خود نشان مي‌دهد. ساير خواص فيزيکي بهبود يافته عبارتند از: مقاومت در برابر آتش، مقاومت بارير (barrier resistance) و هدايت يوني. امتياز ديگر نانوکامپوزيتهاي خاک رس / پليمر اين است که تاثير قابل توجهي بر خواص اپتيکي پليمر ندارند. ضخامت يک لايه رس منفرد، بسيار کمتر از طول موج نور مرئي است، بنابراين نانوکامپوزيت‌هاي خاک­رس / پليمر که خوب ورقه شده باشد، از نظر اپتيکي شفاف مي‌باشد. ميکرو نانوکامپوزيت‌هايي که تصويرشان در شکل 1 نشان داده شده، از ترکيب خاک­رس و پلي­پروپيلن و با استفاده از روش سرد کردن سريع جهت به حداقل رساندن اثر کريستاليزاسيون، ساخته شده‌اند. ميکروکامپوزيت‌هاي مرسوم، قهوه‌اي و مات به نظر مي‌رسند، در حاليکه نانوکامپوزيت‌ها تقريباً شفاف و بيرنگند. با اين دلايل، نتيجه مي‌گيريم که نانوکامپوزيتهاي خاك­رس/ پليمر نمايش خوبي از نانوتکنولوژي مي‌باشد. با سازماندهي و چينش ساختار کلي در پليمرها در مقياس نانومتر، مواد جديد با خواص نو يافت شده‌اند. نکته ديگر در توسعه نانوکامپوزيتهاي خاك­رس / پليمر اين است که اين تکنولوژي، فوراً مي‌تواند کاربرد تجاري پيدا کند، در حاليکه بيشتر نانوتکنولوژي‌هاي ديگر، هنوز در مرحله مفاهيم و اثبات هستند. كاربردهاي نانوکامپوزيت­هاي خاک رس / پليمر اولين کاربرد تجاري اين مواد با استفاده از نانوکامپوزيت خاك­رس / نايلون 6 بعنوان روکش نوار زمان‌سنج براي ماشينهاي تويوتا در همکاري با ube در سال 1991 بود. به فاصله کمي بعد از آن Unikita نانوکامپوزيت نايلون6 را بعنوان محافظ روي موتورهاي GDI شرکت ميتسوبيشي معرفي کرد. در آگوست 2001، ژنرال موتورز و باسل، کاربرد نانوکامپوزيت‌هاي خاك­رس / پليمر را بعنوان جزء مکمل COMC ساخاري و شورلت اکستروژن‌ها به همگان اعلام کرد. اين امر با کاربرد اين نانوکامپوزيت‌ها در درب‌هاي شورلت ايمپالاز (Impalas) صورت گرفت. اخيراً شرکت نوبل پليمرز (Noble/Polymers) نانوکامپوزيت‌هاي خاك­رس / پلي‌پروپيلن را براي استفاده در صندلي‌هاي هندا آکورد ساخته است و اين در حالي است که Ube دارد نانوکامپوزيت‌هاي خاك­رس / نايلون12 (clay/nylon-12) را براي استفاده در اجزاي سيستم سوخت‌رساني، توليد مي‌کند. علاوه بر کاربرد در صنعت خودرو، نانوکامپوزيت­هاي خاك­رس / پليمر، به صنايع نوشيدني‌ها نيز راه يافته‌اند. Alcos CSZ نانوکامپوزيتهاي خاك­رس / پليمر چندلايه را در کاربردهاي جديد خود (بعنوان مواد خطي – سدي) (barrier liner materials) بکار مي‌برد. شرکت Honey well محصولات نانوکامپوزيت خاك­رس / پليمري Aegis TM NC resin را در بسته‌بندي نوشيدني‌ها بکار مي‌برد و اخيراً شرکت‌هاي Mitsubishi Gas Chemical و Nano car ، نانوکامپوزيتهاي Nylon-MXD6 را براي ساخت بطري‌هاي چند لايه (polyethylene terephtalate) PET ساخته است. تاريخچه نانوکامپوزيتهاي خاك­رس / پليمر اگرچه تحقيقات در مورد ترکيب خاك­رس/ پليمر به قبل از 1980 برمي‌گردد، ولي کارهايي که در آن زمان صورت گرفت را نبايد در تاريخچه نانوکامپوزيتهاي خاك­رس / پليمر به حساب آورد، چرا که هيچگاه به نتيجه چشمگيري براي بهبود خواص فيزيکي و مهندس آنها ختم نشد. در حقيقت مي‌توان منشاء نانوتکنولوژي خاك­رس / پليمر را کارهاي شرکت تويوتا که تلاش براي لايه‌لايه کردن دانه‌هاي رسي در نايلون6 شروع شد، دانست. آنها فاش ساختند که توانسته‌اند بهبود قابل توجهي در خواص پليمرها، با تقويتشان بوسيله خاک رس در مقياس نانومتر، ايجاد کنند. از آن موقع به بعد تحقيقات وسيعي در اين زمينه در سطح جهان انجام شده است. در حال حاضر اين بهبودها به ساير پليمرهاي مهندسي از جمله پلي­پروپيلن (PP) ، پلي­اتيلن، پلي­استايرن، پلي­وينيل کلريد،­ آکريلونيتريل، پليمرهاي بوتا اي ان اسنايرن (ABS) ، پلي­متيل متاکريلات، PET ، کوپليمرهاي اتيلن سوينيل استات، پلي­اکريلونيتريل، پلي­کربنات، پلي­اتيلن اکسيد (PEO) ، اپوکسي رزين، پلي­اميد، پلي­لاکتيد، پلي­کاپرولاکتون، فنوليک رزين، پلي­پي­فنيلن وينيلن، پلي­پيرول، لاستيک، استارک (آهار)، پلي­اوراتان، پلي­وينيل پيريدين، سرايت کرده. تکنولوژي ساخت نانوکامپوزيت­هاي خاک­رس / پليمر مرحله نهايي در ساخت نانوکامپوزيت­هاي خاك­رس / پليمر، جدا جدا کردن لايه‌هاي رسي و پخش آن در پليمر مي‌باشد. استراتژي کار بستگي دارد به سازگاري و همگون بودن رس و پليمري که استفاده مي‌شود. اين تعيين مي‌کند که آيا نياز به عمليات مقدماتي روي خاك­رس يا پليمر قبل از مخلوط کردن هست يا نه. اگر سطح لايه‌هاي سيليکاتي با پليمر، سازگار و همگون باشد، اختلاط مستقيم بين اين دو مي‌تواند اتفاق بيفتد، بدون اينکه نياز به عمليات مقدماتي باشد. چنين مواردي بيشتر وقتي اتفاق مي‌افتد که پليمر قابل حل در آب، مانند PEO يا PVP استفاده کنيم، چرا که اين پليمرها و سطح لايه‌هاي سيليکات، هر دو آبدوست هستند و نيروهاي دوقطبي يا وان‌دروالسي بين لايه‌هاي سيليکات، باعث سهولت جذب مولکولهاي آبدوست و ايجاد فشارهاي عمودي روي لايه مي‌شود که در نتيجه باعث جداکردن تک‌تک لايه‌هاي رسي در اين پليمرها مي‌گردد. اما به هر حال، بيشتر پليمرها آب گريز و در نتيجه با دانه‌هاي رسي آبدوست، ناسازگار هستند. در اين موارد نياز به يکسري عمليات مقدماتي روي خاک­رس يا پليمر داريم. پرکاربردترين روش‌هاي براي اصلاح دانه‌هاي رسي، استفاده از آمينواسيدها، نمکهاي آمونيم آلي و يا فسفونيم تترا ارگانيک‌هاست تا سطح آبدوست رس‌ها را به آب گريز تبديل کنيم. دانه‌هاي رسي که به اين روش اصلاح مي‌شوند، ارگانوکلي ناميده مي‌شوند. در مورد پليمرهايي که فاقد هرگونه گروه عاملي مي‌باشند، مانند پلي­پروپيلن (PP) ، معمولاً از تکنيک­هاي افزودن گروه عاملي قطبي روي زنجيره پليمري استفاده مي‌شود و يا اينکه در طي فرآيند ساخت، پليمرهاي پيوند خورده را بصورت مستقيم وارد مي‌کنند. مثلاً در نانوکامپوزيت­هاي رسي / پلي­پروپيلن (clay PP) از مالئيک اسيد پيوند خورده به پلي­­پروپيلن، بصورت مستقيم استفاده شده است. در طي پيشرفتهاي اخير، از مخلوطي که پلي پروپيلن، پروپيلن پيوند خورده با مالئيک ايندريد و ارگانوکلي استفاده شده است. روشهاي زيادي در توليد نانوکامپوزيتها استفاده شده، ولي سه روشي که از ابتداي کار توسعه بيشتري يافته‌اند عباراند از: پليمريزاسيون insitu ، ترکيب محلول القاشدن و فرآيند ذوبي . روش اينسيتو عبارت است از وارد نمودن يک پيش ماده پليمري بين لايه‌هاي رسي و آنگاه پهن کردن و سپس پاشيدن لايه‌هاي رسي درون ماده زمينه (matrix) با پليمريزاسيون. ابتکار اين روش بوسيله گروه تحقيقاتي شرکت تويوتا بود و زماني رخ داد که مي‌خواستند نانوکامپوزيتهاي خاك­رس / پليمر6 را بسازند. اين روش قابليت و توانايي توليد نانوکامپوزيتهايي با لايه لايه شدگي خوب را دارد و در محدوده وسيعي از سيستم­هاي پليمري، کاربرد دارد. اين روش براي کارخانه‌هاي پليمر خام مناسب است تا در فرآيندهاي سنتزي پليمر، نانوکامپوزيت‌هاي رسي / پليمر بسازند و مخصوصاً براي پليمرهاي ترموستينگ (پليمرهايي که در برابر گرما مستحکم‌تر مي‌شوند) بسيار مفيد است. روش ترکيب محلول القا شده (solution induced interceletion) از يک حلال براي بارگيري و پخش رس‌ها در محلول پليمري استفاده مي‌شود. اين روش هنوز مشکلات و موانع زيادي را در راه توليد تجاري نانوکامپوزيت‌ها پيش رو دارد. قيمت بالاي حلالهاي مورد نياز و همچنين مشکل جداسازي فاز حلال از فاز محلول توليد شده، از جمله اين موانع هستند. همينطور در اين روش، نگرانيهايي از نظر امنيت و سلامتي وجود دارد . با اين وجود اين روش در مورد پليمرهاي محلول در آب قابل اجرا و مقرون به صرفه است، بخاطر قيمت پايين آب که بعنوان حلال استفاده مي‌شود و همچنين امنيت بيشتر و خطر کمتر آن براي سلامتي. در روش فرآيند ذوبي، ترکيب خاك­رس و پليمر در حين ذوب شدن انجام مي‌شود. بازده و کارآيي اين روش به اندازه روش اينسيتو نيست و کامپوزيتهاي توليد شده، ورقه‌ورقه شدگي کمي دارند. به هر حال اين روش مي‌تواند در صنايع توليد پليمر قديمي که در آنها از روشهاي قديمي مانند قالبگيري و تزريق (Extrution and injection molding) استفاده مي‌شود، بکار رود و اتفاقاً نقش مهمي در افزايش سرعت پيشرفت توليد تجاري نانوکامپوزيت‌هاي رس / پليمر ايفا کرده است. علاوه بر اين سه روش با روش‌هاي ديگر نيز در حال توسعه هستند که عبارتند از: ترکيب جامد، کوولکانيزاسيون و روش سل-ژل. اين روشها بعضاً در مراحل ابتدايي توسعه هستند و هنوز کاربرد وسيع پيدا نکرده‌اند. رقابت نانوکامپوزيت­هاي خاک­رس / پليمر با کامپوزيتهاي اليافي با پيدا شدن سروکله تکنولوژي نانوکامپوزيت، جهشي در زمينه تقويت پليمرها بوجود آمده، و معقول به نظر مي‌رسد که فکر کنيم نانوکامپوزيت­هاي خاك­رس / پليمر، بتوانند جاي کامپوزيتهاي تقويت شده با الياف مرسوم را بگيرند. از نظر تئوري، تقويت پليمرها در مقياس نانويي، امتيازات برتري نسبت به کامپوزيتهاي تقويت­شده با الياف دارند. ضعف کامپوزيت­هاي تقويت شده با الياف، در واقع يک شکست در راه استفاده مفيد از خواص ذاتي و طبيعي مواد است. مثلاً سعي مي‌کنيم که با بکارگيري پيوندهاي قوي کووالانسي و استفاده از صفحه‌هاي آروماتيک ساختار گرافيتي، مواد کربني را مستحکم‌تر کنيم. در حاليکه الياف کربني که امروزه استفاده مي‌شود، تنها 3 تا 4 درصد استحکام نظري صفحات آروماتيک را به دست مي‌دهند. عدم اتصال داخلي بين صفحات آروماتيک در ساختار الياف کربني، مانع دستيابي به استحکام مطلوب مواد مي‌شود، در حاليکه اين مشکل در مورد نانوکامپوزيتهاي تقويت­شده با پرکننده‌هاي لايه‌اي وجود ندارد. هنگاميکه از پرکننده‌هاي لايه‌اي و ورقه‌اي در زمينه پليمري استفاده مي‌شود، اتصالات و پيوندهاي داخلي بوجود آيد و بنابراين حداکثر استفاده از خواص ذاتي و طبيعي لايه‌هاي منفرد مي‌شود. در حقيقت خواص مکانيکي بدست آمده، در بهترين نانوکامپوزيت‌هاي خاك­رس / پليمر بسيار کمتر از کامپوزيتهايي است که از درصد بالايي الياف، براي تقويت استفاده مي‌کنند. در حال حاضر بيشترين پيشرفتها و بهبودها در خواص مکانيکي نانوکامپوزيتهاي خاك­رس / نايلون6 بدست آمده که در آنها 4 درصد وزني از خاك­رس بارگذاري شده است. شکل 2 ضريب و قدرت کشساني اين نانوکامپوزيت را با نايلون 60 و نايلون 60 تقويت شده با 48 درصد وزني، الياف خرده شيشه‌اي نشان مي‌دهد. مشاهده مي‌شود که بهترين نانوکامپوزيت خاك­رس / پليمري، هنگاميکه حجم بالايي از جز را تقويت‌کننده اليافي مطرح باشد، نمي‌تواند با کامپوزيتهاي اليافي همساني و رقابت کند. به منظور دستيابي به خواص مکانيکي بهتر عناصر تقويت‌کننده بيشتري در نانوکامپوزيتهاي خاك­رس / پليمر مورد نياز است، در حاليکه چنين کاري غيرممکن است. زيرا هنگاميکه عمل لايه لايه شدن اتفاق مي‌افتد، سطح تماس لايه‌هاي رسي صدها و بلکه هزاران برابر مي‌شود و اين باعث مي‌شود که مولکولهاي پليمر کاني، براي خيس کردن تمام سطح تقويت‌کننده‌هاي رسي نداشته باشيم. شکل 2 در هر حال، هنگاميکه بحث استفاده از درصد پايين پرکننده مطرح باشد، در اين حالت نانوکامپوزيت‌هاي خاك­رس / پليمر را با کامپوزيتهاي تقويت شده بوسيله الياف، مقايسه کنيم، مي‌بينيم که نانوکامپوزيتها تقويت بهتري را نسبت به کامپوزيتهاي اليافي مرسوم، نشان مي‌دهند. اطلاعات بدست آمده بوسيله تحقيقات Fornes و Panl در مورد ضريب يانگ نانوکامپوزيتهاي خاك­رس / نايلون6 و کامپوزيت­هاي نايلون6 تقويت شده با الياف شيشه‌اي در محدوده استفاده از 10 درصد وزني پرکننده، در شکل 3 رسم شده است. مي‌توان مشاهده نمود که نانوکامپوزيتها کارآيي بيشتري را در بهبود ضريب يانگ نسبت به کامپوزيتهاي اليافي نشان مي‌دهند. شکل 3 از مقايسه بالا مشهود مي‌گردد نانوکامپوزيتهاي خاك­رس / پليمر در محدوده بارگذاري درصد پايين از الياف، امتيازاتي نسبت به کامپوزيتهاي تقويت شده با الياف دارند و مطمئناً بازار کامپوزيتهاي اليافي مرسوم با حجم پايين از جزء اليافي، با پيشرفت نانوکامپوزيتهاي خاك­رس / پليمري تحت تاثير قرار خواهد گرفت، ولي فعلاً تابحال، پيشرفت در نانوکامپوزيت­ها تاثير کمي روي بازار کامپوزيتهاي تقويت شده با الياف گذاشته است. مشكلات توسعه نانوکامپوزيت­هاي خاک­رس / پليمر علاوه بر پرکننده‌ها، عمده مشکلات پيش­روي پيشرفت نانوتکنولوژي خاك­رس / پليمر عبارتنداز: عدم شناخت مکانيزمهاي موثر در افزايش کارايي، به کاربردي پليمرهاي ترموستينگ و عدم پايداري ارگانوکلي‌ها در برابر حرارت. اگرچه مدل‌سازي‌هاي زيادي در جهت پيشبرد درک از مکانيزم افزايش کارايي عمده خواص فيزيکي و مهندسي در استفاده از نانوکامپوزيت‌هاي خاك­رس / پليمر انجام شده، ولي هنوز مسافت زيادي را پيش­رو داريم. به­عنوان مثال، هنوز خواص فيزيکي مهندسي لايه‌هاي منفرد سيليکات، دقيقا شناخته نشده‌اند. از اين رو مشکل است که يک مکانيزم تقويت‌کننده ايجاد کنيم، و از طرفي، ساختار ذغال باقيمانده ناشي از احتراق نانوکامپوزيت خاك­رس / پليمر هنوز روشن نيست. بدون آن ممکن نيست مکانيزمي براي ايجاد مقاومت در برابر آتش، براي آن طراحي کنيم. مدل‌سازيها و تحقيقات تجربي اساسي، بايد در جهتي هدايت شود که در آينده اين موانع برطرف شوند. به کاربردن پليمرهاي ترموستينگ، مشکل عمده ديگري در توسعه نانوکامپوزيتهاي خاك­رس / پليمر مي‌باشد. ترکيب خاک­رس با يک پيش ماده پليمر ترموستينگ مي‌تواند عامليت يک پليمر را تغيير دهد. تغيير در عامليت بر ميزان اتصالات عرضي تاثير مي‌گذارد و بخوبي مشخص است که عمده خواص مهندسي پليمر‌هاي ترموستينگ، تابعي از ميزان تعداد اتصالات عرضي است. با اين وجود گزارش‌هايي هم وجود داشته مبني بر بهبود خواص مکانيکي سيستمهاي پليمري تروستينگي که ميزان اتصالات عرضي آن پايين بوده است، از جمله اپوکسي رزين با T g پايين و پلي اوراتان‌ها. آخرين مسئله مستقيماً بر مي‌گردد به نگراني در مورد تجاري‌سازي نانوتکنولوژي خاك­رس / پليمر، کمبود ارگانوکلي‌هاي پايدار در برابر گرما و نيز از نظر تجاري در دسترس، از موانع ثبت شده در اين مسير هستند. بيشتر ارگانوکلي‌هاي در دسترس، از جايگزيني کاتيون فلزي درون ساختار رس، با نمکهاي آمونياک آلي تهيه مي‌شوند. اين نمکهاي آمونيم در مقابل گرما ناپايدارند و حتي در دماهاي کمتر از 170 درجه سانتيگراد از بين مي‌روند. مسلماً چنين مواد فعال سطعي (سورفکتنت) براي بيشتر پلاستيکهاي مهندسي هنگاميکه از تکنولوژي فرآيند ذوب شدن براي ساختن نانوکامپوزيت‌ها استفاده شود، صاحب نيستند و ساخت نانوکامپوزيتهايي که در آن از ارگانوکلي‌هاي اصلاح شده بوسيله نمکهاي آمونيم بکار رفته، با استفاده از تکنيک‌هاي ديگر، به يک معضل تبديل شده است. اگرچه تعداد زيادي سورفکتنت پايدار در برابر گرما، مثل فسفونيم شناخته شده‌اند، ولي اين سورفکتنت‌ها براي کاربرد تجاري، مقرون به صرفه نيستند. نوآوري‌هايي در جهت اصلاح رس‌هاي آبدوست با استفاده از پليمرها و اليکومرهاي چند عاملي انجام شده تا ارگانوکلي‌هاي پايدار در برابر گرما براي توليد نانوکامپوزيتهاي رس / پليمر بسازند. خلاصه و نتيجه‌گيري: پيشرفت‌هاي عمده در توسعه نانوکامپوزيت­هاي خاك­رس / پليمر به پانزده ساله اخير بر مي‌گردد و مزيتها و محدوديتهاي اين تکنولوژي روشن شده است. با اين حال، تا شناخت مکانيزم‌هاي افزايش کارايي و بهبود خواص مهندسي آنها و اينکه بتوانيم ريزساختارهاي آنها را سازماندهي و چينش کنيم تا به خواص مهندسي ويژه دست پيداي کنيم، راه طولاني در پيش رو داريم. در مواقعي که از درصد پايين پرکننده استفاده شود، نانوکامپوزيتهاي خاك­رس / پليمر اين پتانسيل را دارند تا جايگزين کامپوزيتهاي مرسوم تقويت شده با الياف شوند.
  9. سلام خدمت همه دوستان گرايش خودم پليمر نيست اما تا جايي كه بتونم كمكتون مي كنم تو اين زمينه...خوشحال ميشم كه دوستان پليمري همكاري داشته باشن
  10. چکيده: امروزه با گسترش علم پليمر راهکارهاي جديدي براي زندگي بهتر ارائه مي شود. هر ساله دولت ها هزينه هنگفتي را براي راه سازي و ترميم آسفالت هاي ترک خورده و فرسوده مي پردازند. با توجه به اين که مواد اوليه آسفالت قير ها و ترکيباتي مشابه هستند که از نفت استخراج مي شود با مطالعه بر روي اين مواد مشاهده شد که مي توان با افزودن مواد پليمري جلوي ترک خوردن و فرسودگي آسفالت را گرفت. بر اين اساس ساخت آسفالت پليمري و آسفالت گرم در دهه اخير از طرحهاي نوين تحقيقاتي در سطح جهان به شمار مي آيد.با توجه به پارامترهاي موجود در ساخت آسفالت، روشهاي مختلفي جهت توليد آسفالت گرم در جهان وجود دارد که يکي از آنها استفاده از پليمر به عنوان افزودني قير مي باشد. در اين طرح مرکز تحقيقات صنايع شيميائي فارس با همکاري گروه پژوهشی فناوری های نوين در مهندسی عمران توانسته است آسفالت گرم با استحکام و ماندگاري بالا با استفاده از افزودن پليمر به قير توليد کند. در اين مقاله سعي شده خلاصه اي از جزئيات اين طرح نشان داده شود. نویسنده: سميه محمدي دکتري شيمي آلي دانشگاه شيراز/ عضو مرکز تحقيقات صنايع شيميائي فارس آسفالت گرم.pdf
  11. در اين پژوهش، طراحي تجربي واكنش پليمر شدن راديكالي وينيل استات در محلول بر اساس مدل سازي آماري به صورت معادلات غير خطي چند جمله اي و كد گذاري اين معادلات از طريق طراحي عوامل واكنش انجام گرفته است. با استفاده از عوامل اصلي زمان و دما و با توجه به درصد تبديل پليمر شدن تشكيل سطوح پاسخ بررسي شده است. تاثير متقابل عوامل اصلي از طريق ضرايب معادله چند جمله اي آنها مشخص شده است. با استفاده از رگرسيون چند جمله اي غير خطي آبكافت پلي وينيل استات مدلسازي شده است. نوع رگرسيون و پراكندگي داده هاي آزمايش از طريق تحليل واريانس محاسبه و با استفاده از مجموع مربعات كل و محاسبات آماري سطح اطمينان حاصل از اين طراحي گزارش شده است. دانلود مقاله منبع : پایگاه اطلاعات علمی
  12. تاریخچه از نظر قدمت تاریخی برای صنایع لاستیک منشا دقیقی نیست. اما اعتقاد این است که بومیان آمریکای مرکزی از برخی از درختان شیرابه‌هایی استخراج می‌کردند که این شیرابه‌ها که بعدها نام " لاتکس" را بخود گرفت اولین مواد لاستیکی را تشکیل می‌دادند. پدیده ولکانیزاسیون در سال 1829، "گودیر" از آمریکا و "مکین تاش" از انگلستان، این دو متوجه شده‌اند که در اصل مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن، ماده‌ای قابل ذوب و قابل شکل دادن ایجاد می‌شود که می‌توان از آن، محصولات مختلفی از قبیل چرخ ارابه یا توپ تهیه کرد. این پدیده همان پدیده ولکانیزاسیون است که در طی آن لاستیک اکسیده می‌شود و سولفور کاهیده و به سولفید تبدیل می‌شود. البته این عمل در دمای 110 درجه سانتیگراد تهیه می‌‌شود. نتیجه این کشف تولید مواد لاستیکی مثل لاستیکهای توپر، پوتین و ... است. کائوچوی طبیعی و مصنوعی کائوچوی طبیعی در شیره درختی به نام هوا، Hevea وجود دارد و از پلیمر شدن هیدروکربنی به نام 2- متیل- 1 و 3- بوتادین معروف به ایزوپرن بوجود می‌آید. با توجه باینکه در فرمول ساختمانی کائوچو یا لاتکس طبیعی هنوز یک پیوند دوگانه وجود دارد، به همین دلیل وقتی کائوچو را با گوگرد یا سولفور حرارت دهیم، این منومرها، پیوند پی را باز می‌کنند و با ظرفیت‌های آزاد شده، اتم گوگرد را می‌گیرند. در نتیجه کائوچو به لاستیک تبدیل می‌گردد. حرارت دادن کائوچو با گوگرد و تولید لاستیک را اصطلاحا ولکانیزاسیون می‌نامند. به همین دلیل، لاستیک حاصل را نیز، "کائوچوی ولکانیزه" گویند. چند نوعی کائوچوی مصنوعی نیز ساخته شده‌اند که از مواردی مانند 1 و 3- بوتادی ان و جسمی به نام 2- کلرو- 1 و 3- بوتادین معروف به "کلروپرن" و جسم دیگری به فرمول 2 و 3- دی متیل- 1 و 3- بوتادین بتنهایی یا مخلوط درست شده‌اند. کلروپرن به راحتی بسپاریده (پلیمریزه) شده و به نوعی کائوچوی مصنوعی به نام "نئوپرن" تبدیل می‌شود. تکامل در صنعت لاستیک بعدها در سال 1888 خواص مکانیکی لاستیکهای تهیه شده توسط گودیر و مکین تاش با استفاده از کربن سیاه به عنوان یک ماده پرکننده و افزودنی بسیار بهبود بخشیده شده و در نتیجه لاستیکهای بادی دانلوب، "تیوپ" تهیه شد. بعد از آن لاستیکهای سنتزی تهیه و به بازار عرضه شد مانند ایزوپرن، بوتادی ان و لاستیکهای تیوکل. بعدها لاستیکهای سنتزی مثل کوپلیمرهای استیرن و بوتادی ان تهیه شد که در سال 1941 مصرف آن صفر بود. اما در سال 1945 مصرف آن 700000000 می‌رسید. به موازاتی که مصرف لاستیکهای سنتزی بالا می‌رود، مصرف لاستیکهای طبیعی پایین می‌آید. چون لاستیکهای سنتزی اقتصادی‌تر هستند.
  13. جن کارلسون به همراه همسرش جوش شیر از جین‌های آبی قدیمی برای خلق نوعی کامپوزیت فیبر جین موسوم به Denimite استفاده کرده‌ است.به جز جین‌های بازیافت‌شده، این کامپوزیت همچنین شامل یک رزین ترموست زیست‌محور است که هیچ ترکیب آلی فراری ندارد.با کنترل فشاری که در آن، این دو ماده کلیدی (جین و رزین) ترکیب می‌شوند، تراکم و بنابراین استحکام هر آیتمی تغییر می‌کند.گفته می‌شود، ماده حاصل، سبک‌وزن بوده و در مقابل آب غیرقابل‌نفود است و به دلیل ماهیت تصادفی توزیع فیبرهای جین، استحکام مکانیکی را در تمامی جهات نشان می‌دهد. افزون بر این، مواد خام آن نسبتا فراوان و ارزان بوده است.هم‌اکنون، Denimite در ورقه‌های مسطح با ضخامت تا یک اینچ تولید می‌شود که می‌توان آن را برش داده، سنباده کشیده و قالب‌بندی کرد.سازندگان مدعی‌اند می‌توان از این کامپوزیت برای ساخت پنل‌های تزئینی، مبلمان، قطعات خودرو و کالاهای مصرفی استفاده کرد.آن‌ها هم‌اکنون در حال جمع‌آوری بودجه برای توسعه بیشتر محصول خود هستند. منبع: پینا
  14. یک طراح هلندی با تغذیه حلزون ها به وسیله کاغذهای رنگی موفق به تولید ماده منحصر به فرد و انعطاف‌پذیر جدیدی شده است. در این روش، حلزون‌ها با کاغذ رنگی تغذیه می‌شوند؛ سیستم گوارش این نرم تن قادر به هضم رنگدانه‌های موجود در کاغذ نبوده و به همین دلیل رنگدانه به همراه مدفوع از بدن جانور خارج می‌شود. رنگ مدفوع بستگی به رنگ کاغذی دارد که حلزون با آن تغذیه شده است. سپس مدفوع رنگی جمع‌آوری شده و درون دستگاهی سابیده و مخلوط می‌شود که در نهایت ماده جدید به شکل ریسمان‌های رنگی انعطاف‌پذیر بدست می‌آید. یک متر از این ریسمان‌های رنگی ظرف مدت یک ساعت تولید می‌شوند؛ برای تهیه یک متر از این ماده انعطاف‌پذیر 9 حلزون باید در مدت پنج روز، شش گرم مدفوع تولید کنند. کاغذهای رنگی که حلزون با آن تغذیه می‌شود، دارای ساختار سلولی مشابه برگ گیاهان بوده و مشکلی برای جانور ایجاد نمی‌کند. منبع: مجله بسپار
  15. مهندس قهاری طی گفت و گو با بسپار ضمن اعلام این خبر به تشریح گونه های جدید EPDM پرداخت. قهاری در این ارتباط گفت: کائوچوی اتیلن پروپیلن دی ان (EPDM) بطور گسترده ای در بسیاری از کاربردها مورد استفاده قرار می گیرد و فرآیند پذیری و خواص عملکردی ماوراء کائوچوی طبیعی و برخی کائوچوهای مصنوعی فراهم می آورد. EPDM بدلیل نداشتن باند دوگانه روی ساختار اصلی مقاومت حرارتی ، آب و هوایی و ازن خوبی دارد. در برابر عبور جریان الکترسیته عایق است و از طول عمر بالایی در شرایط سرویس طولانی برخوردار است. همچنین EPDM را می توان برای درنظر گرفتن جنبه های اقتصادی و حصول کمینه قیمت آمیزه ، همزمان با حفظ ویژگی های عملکردی ، با مقدار زیادی فیلر و روغن پر نمود. شرکت Mitsui Chemicals بعنوان یکی از پیشگامان تولید EPDM با کاتالیزورهای زیگلر- ناتا و متالوسن از سالیان دور فعال بوده است. استفاده از کاتالیزورهای متالوسن باعث ایجاد کمترین محتوی ژل و کلر در کائوچوی خام ، خواص مکانیکیبالاتر و اختلاط پذیری بسیار مناسب می شود. محصولات Mitsui Chemicals طیف وسیعی از پارامترهای مونی ویسکوزیته ، درصد اتیلن ، نوع مونومر غیر اشباع و درصد روغن را شامل می شود. اخیراً این شرکت دو گونه جدید را برای تولید محصولات اسفنجی توسعه داده و به بازار عرضه نموده است: EPT 9090M گونه ای بدون روغن که برای فرآیندپذیری مناسب و تولید اسفنج طراحی شده است. 9090M دارای درصد غیر اشباعیت بسیار بالایی است تا پخت سریعی را با درصد مونومر غیر اشباع (ENB content) در حدود 14.2% فراهم آورد ( به تنهایی یا در ترکیب با سایر گونه ها ) و همچنین سطحی صاف در محصول اکسترود یا قالبگیری شده بدست می دهد و همزمان خواص اسفنجی خوبی هم ایجاد می کند. از طرف دیگر از آنجاییکه دارای زنجیرهای جانبی با طول بلند است دانسیته پایین تر و حفظ شکل بهتری حین فرآیند تولید اسفنج ممکن می سازد. گونه EPT8030M هم برای تولید اسفنج با دانسیته بسیار پایین طراحی شده است. تکنولوژی کاتالیزور متالوسنی امکان داشتن شاخه های جانبی کنترل شده در کنار اینکه ساختار اصلی پلیمر هم شاخه ای باشد را فراهم آورده است. در نتیجه این ساختار فوق شاخه ای ، پایداری خوبی برای ساختار اسفنج بهنگام تولید ایجاد می کند و تولید اسفنج با دانسیته بسیار پایین و سطح ظاهری مناسب را تضمین می کند. درصد مونومر غیر اشباع در این گرید 9.5%است. اطلاعات بیشتر و تفضیلی را می توان با شرکت ادونسد پلیمر(info@advanced-polymer.com) نماینده رسمیMitsui Chemicals در خاورمیانه کسب کرد. شماره تماس این شرکت 88630460 می باشد منبع: مجله بسپار
  16. پژوهشگران ایرانی با استفاده از یک پلیمر مصنوعی زیست تخریب‌پذیر و عسل به عنوان یک پلیمر طبیعی در طی فرایند الکتروریسی، وب نانولیفی حامل دارو برای کاربرد پوشش زخم تولید کردند. دستاورد‌های این تحقیقات که بخشی از پروژه دکترای هما مالکی از دانشکده مهندسی نساجی دانشگاه امیرکبیر است، می‌تواند امکان تولید و کاربرد در پوشش زخم و تولید لایه‌های ترمیمی را فراهم کند. فناوری نانو یک فناوری نوظهور و بین‌رشته‌ای است که در حوزه‌ی وسیعی از علوم مختلف مورد توجه قرار گرفته است. یکی از مهمترین انواع نانوساختارها، نانوالیاف است. هنگامی که قطر الیاف از مقیاس میکرومتر به مقیاس نانومتر تبدیل می‌شود، خواص شگفت‌انگیزی مشاهده می‌شود. این خواص برجسته باعث می‌شود که الیاف نانو انتخاب مناسبی برای بسیاری از کاربردهای مهم در فناوری‌های پیشرفته باشند. قطر کم نانوالیاف، سطح مخصوص بالا، انعطاف‌پذیری و خصوصیات مکانیکی مطلوب و ماهیت متخلخل سازه‌های نانولیفی باعث می‌شود که الیاف نانو انتخاب مناسبی برای بسیاری از کاربردهای مهم در پزشکی باشند. شباهت ساختار بافت طبیعی به الیاف در مقیاس نانو، از مهمترین دلایلی است که دانشمندان به استفاده از آنها در زمینه پزشکی تمایل نشان داده‌اند. نانوالیاف الکتروریسی شده به طورگسترده‌ای در تولید داربست‌های مهندسی بافت، ابزارهای انتقال و رهایش دارو، پوشش زخم و کاشتنی‌ها مورد استفاده قرار می‌گیرند. به نوشته سایت نانو، در سال‌های اخیر طیف گسترده‌ای از مواد بیولوژیک و ترکیبات زیست‌ تخریب‌پذیر برای تولید نانوالیاف، الکتروریسی شده‌اند. در این پژوهش، با استفاده از یک پلیمر مصنوعی زیست تخریب‌پذیر و یک پلیمر طبیعی در طی فرایند الکتروریسی، وب نانولیفی حامل دارو برای کاربرد پوشش زخم تولید شد. عسل به عنوان ماده التیام بخش زخم در طب سنتی ایران و با توجه به خواص ضدمیکروبی و ضد التهابی آن، به عنوان یک پلیمر طبیعی، در کنار (PVA)، به عنوان یکی از اجزای این لایه قرار گرفت. پلی وینیل الکل یک پلیمر آبدوست و نیمه‌کریستالین است که به دلیل خواص زیست سازگاری، زیست تخریب پذیری و عدم سمیت، در کاربردهای پزشکی مورد توجه قرار گرفته است. از (Dexamethasone Sodium Phosphate (Dex-P به عنوان یک داروی ضدالتهاب استفاده و رفتار رهایش آن بررسی شد. دکتر علی‌اکبر قره‌آقاجی، عضو هیات علمی دانشگاه صنعتی امیرکبیر، درباره مراحل تحقیقات این پژوهش توضیح داد: در راستای رسیدن به هدف مورد نظر، محلول‌های عسل/PVA پس از تعیین شرایط بهینه، آماده‌سازی و الکتروریسی شد. برای تولید نمونه‌های حامل دارو، محلول‌های عسل/PVA با نسبت‌های 0/100 و 20/80 حاوی 5 ، 10 و 15 درصد Dex-P تهیه و الکتروریسی شد. مورفولوژی نانوالیاف تولید شده (با/بدون دارو) به کمک میکروسکوپ الکترونی و میکروسکوپ نیروی اتمی مورد مطالعه قرار گرفت و پروفایل و کینتیک رهایش دارو از نمونه‌های بدون/حاوی عسل به صورت برون تنی انجام شد. وی با اشاره به استفاده از عسل به عنوان یک ماده طبیعی در کنار یک پلیمر مصنوعی برای تولید نانوالیاف طی فرایند الکتروریسی به عنوان یکی از ویژگی‌های این پژوهش، افزود: از گذشته‌های دور از عسل به عنوان یک ماده شفابخش در درمان و التیام انواع زخم‌ها استفاده شده است. گزارش‌های متعددی از اثرات شفابخش عسل در متون پزشکی به جامانده است که از عسل به عنوان اولین پوشش زخم نام می‌برد. عسل دارای خاصیت ضدمیکروبی و ضد التهاب است و مقالات زیادی در زمینه تأثیرگذاری عسل در از بین بردن عفونت‌ها و جلوگیری از عفونی شدن زخم‌ها منتشر شده است. بنابراین تلفیق خصوصیات بی‌همتای نانوالیاف و خواص طبی عسل با تولید پوشش زخم در طی فرایند الکتروریسی، ویژگی برجسته این کار به شمار می‌رود. عضو هیات علمی دانشگاه صنعتی امیرکبیر تصریح کرد: نتایج تصاویر SEM و AFM نشان داد که الیاف کاملا یکنواخت و دارای سطحی نسبتا صاف بوده است. اما در نانوالیاف حاوی 60 درصد عسل بیدهای دوکی شکل مشاهده شد. همچنین با افزایش میزان عسل در مخلوط، قطر نانوالیاف کاهش یافت. نانوالیاف حامل دارو نیز دارای سطحی نسبتا صاف و یکنواخت بوده و با افزایش میزان دارو قطر نانوالیاف کاهش یافت. بررسی رفتار رهایش دارو نشان دهنده یک رهایش ناگهانی اولیه بود. نتایج تجزیه و تحلیل‌های آماری نشان داد که حضور عسل تأثیر معناداری در فرایند و رفتار رهایش دارو نداشته است. بنابراین نانوالیاف الکتروریسی شده حاوی عسل گزینه‌ای مناسب برای تولید و کاربرد پوشش زخم است. وی تاکید کرد: با استفاده از دستاوردهای این پژوهش می‌توان امکان ترمیم سریع‌تر یک زخم با کمک عسل را فراهم آورد که خود عسل بعنوان یک داروی شناخته شده در طب سنتی بوده و در این تحقیقات با تحویل دارو همراه شده است. نتایج این کار تحقیقاتی که با هدایت دکتر علی اکبر قره آقاجی و همکاران وی در دانشگاه‌های امیرکبیر، تهران و Twenteکشور هلند صورت گرفته، در مجله Applied polymer science منتشر شده است. منبع: پینا
  17. محققان هلندی با استفاده از پوسته بدن سوسک های مرده، پلاستیک زیست تخریب پذیری توسعه داده اند که می تواند به کاهش حجم زباله های پلاستیکی در مراکز دفن زباله کمک کند. «پلاستیک حشره‌یی» زیست تخریب پذیر با استفاده از ذوب پوسته «سوسک سیاه» (darkling beetle) تهیه می شود. سوسک ها سه تا چهار ماه پس از تخم گذاری می میرند و می توان از پوسته این سوسک های مرده حاوی پلیمر کیتین – نوعی پلاستیک طبیعی – برای ساخت ماده زیست تخریب پذیر موسوم به «کلئوپاترا» (coleopatra) استفاده کرد. برای تهیه یک ورق نازک از پلاستیک کلئوپاترا – در زبان یونانی به معنای سوسک – پوسته دو هزار و 500 سوسک مرده مورد استفاده قرار می گیرد. با ذوب و فشردن پوسته ها به یکدیگر به وسیله حرارت طی شش ماه می توان یک قطعه 10 سانتیمتر مربعی از پلاستیک کلئوپاترا حاوی پلاستیک طبیعی کیتین (chitin)‌ تولید کرد. طی یک فرآیند شیمیایی، کیتین به کیتوزان (chitosan) تبدیل می شود که با توجه به تغییر در ترکیب مولکولی، از پیوستگی بهتری برخوردار است. با وجود روند پر زحمت تولید پلاستیک حشره‌یی زیست تخریب پذیر می توان با توسعه این روش، اقدام موثری برای جایگزین کردن پلاستیک های معمولی غیر قابل تجدید پذیر انجام داد. در حال حاضر از این پلاستیک زیستی برای ساخت جواهرات و چراغ های زینتی استفاده می شود و محققان قصد دارند در ادامه تحقیقات، ویژگی های این ماده ساخته شده از مواد زائد و زیست تخریب پذیر برای استفاده در کاربردهای دیگر را مورد بررسی قرار دهند. ساخت ورق نازک از پلاستیک کلئوپاترا با پوسته دو هزار و 500 سوسک مرده ساخت چراغ تزئینی با پلاستیک زیستی کلئوپاترا منبع: مجله بسپار
  18. mim-shimi

    مقدمه‌ای بر پلیمر

    پلیمر یک واژه یونانی است. و از اتصال زنجیرهای کوچک منومرساخته میشود. که انصال این زنجیره ها را پلیمریزاسیون گویند. فرایند پلیمریزاسیون عموماً به دو صورت انجام میشود که خود نیاز به یک بحث طولانی و پیچیده میباشد. ویژگی برتر این مواد پلیمری : سبکی، سختی و در عین حال انعطاف پذیری، مقاومت در برابر خوردگی، رنگ پذیری، شفافیت، سهولت در شکل پذیری و بسیاری از خواص مورد استفاده در کاربردهای مختلف. پلیمرها عموماً به دو دسته پلاستیکها و لاستیکها تقسیم میشوند. وهر دو گروه نیز خود به پلیمرهای گرمانرم(termoplast) و گرما سخت (termoset) تقسیم میشوند که بطور مفصل شرح داده خواهد شد. به خاطر اینکه مواد پلیمری به تنهایی نمی توانند مورد مصرف قرار گیرند در محل تولید (پتروشیمی) یا صنایع پایین دستی بنا به شرایط و کاربرد آنها از مواد افزودنی (addetive) استفاده میشود. به طور مختصر بعضی از این افزودنی ها ذکر میشود. مواد پرکننده (filler): مانند خاک رس یا در اکثر موارد کربنات کلسیم یا سیلیکا استفاده میشود و علت افزودن آنها کاهش قیمت است و تأثیری در افزایش خواص ندارد. از افزودنی مثل الیاف کوتاه یا پولک جهت بهبود خواص مکانیکی استفاده میشود. منظور از خواص مکانیکی کاهش خزش و استحکام در برابر تنش و ... میباشد. روان کننده ها (lubricant): این مواد ویسکوزیته پلیمر مذاب را کاهش داده و شکل پذیری در قالب ها را آسان تر میکند. مانند استارات کلسیم. رنگدانه ها (pigment): جهت ایجاد رنگهای گونگون در پلاستیکها به کار میروند. نرم کننده ها (plasticizers): موادی با وزن مولکولی و طول زنجیره کمتر نسبت به رنجیره پلیمرها که خواص و مشخصه شکل گیری پلیمرها را کمتر میکند. بهترین نمونه کاربرد آن DOP دی اکتیل فتالات، در تهیه PVC پلی وینیل کلراید میباشد که باعث انعطاف پذیری آن میشود. پی وی سی تقریباٌ سخت میباشد و در موارد استفادهایی که انعطاف پذیری نیاز داریم بوسیله این ماده آن را نرم میکنیم. مثال ساده استفاده در سفره ها (به بوی خاص و تند آن توجه کنید همان DOP است) و دمپایی ها و داشبوردهای پیکان های مدل قدیم! میباشد. و اگر به ترک! داشبورد بعضی از آنها توجه کنیم مربوط به از بین رفتن (پریدن) این افزودنی میباشد. استحکام دهنده ها(reinforcement) : با افزودن موادی نظیر الیاف شیشه یا الیاف کربن مقاومت و سفتی پلیمرها افزایش و بهبود می یابد. نظیر فایبر گلاس ها یا بدنه هواپیما و بعضی از خودروها مانند سیناد2 ! پایدار کننده ها(stabilizers) : این افزودنی ها از فساد و تخریب پلیمرها در مقابل عوامل محیطی مانند نور خورشید (اشعه UV) و رطوبت و ... جلوگیری میکند. مانند مواد ضد اکسایش که به پلاستیکهایی نظیر ABS اکریو نیتریل-بوتادین- استایرن ، پلی اتیلن و پلی استایرن اضافه میشود و پایدارکننه های حرارتی که معمولاٌ برای شکل دهی PVC به کار میرود. مواد ضد آتش زا(inflammable) : از این مواد در پلیمرهای استفاده میشود که خطر آتش سوزی در محل میباشد. بعضی از پلیمرها مانند PVC که حوای ماده کلر(ضد آتش) میباشد، در هنگام آتش سوزی خود اطفا میباشد و خاموش میشود. همچنین گاز وجود گاز خنثی نیتروژن در فوم های پلی استایرن (سقف کاذب) نیز باعث اطفاء حریق میباشد.
  19. پژوهشگران کشور ماده پلیمری زیست تخریب پذیری را عرضه کردند که با پاشش آن در منطقه ریگ بلند کاشان علاوه بر تثبیت خاک موجب افزایش تنوع زیستی در منطقه شده است و محققان در تلاش هستند تا این پلیمر را در پایلوت بزرگتری اجرایی کنند. پروین برادران قهفرخی، مجری طرح در گفتگو با مهر با بیان اینکه این ماده با عنوان مالچ پلیمر سلولزی نانوسلوفید، تولید شد، گفت: مالچ تولید شده یک نوع مالچ زیست تخریب پذیر پلیمری نانو سلوفید است که برای کنترل کانونهای بحرانی بیابانی، ماسههای روان و ریزگردها استفاده میشود و جایگزین مناسبی برای مالچهای نفتی به شمار میرود. وی با بیان اینکه این طرح در چهارمین جشنواره علم تا عمل به عنوان طرح ویژه کشوری معرفی شد، اظهار داشت: در جلسه اخیر هیات دولت که با محوریت توجه به محیط زیست و کنترل ریزگردها برگزار شد، این طرح مورد توجه قرار گرفت. برادران با اشاره به تفاوت مالچ تولیدی با مالچهای عرضه شده در شرکتهای دانش بنیان افزود: مالچهای تولید شده در حد پژوهش بوده است ولی مالچی که ما تولید کردیم به صورت میدانی به مدت 4 سال در پایلوت مورد نظر تحت نظارت مرکز تحقیقات بیابان زدایی وابسته به سازمان جنگلها و مراتع و نظارت علمی یکی از دانشگاههای کشور پاشیده شد. مجری طرح، پایلوت این طرح را در منطقه "ریگ بلند" کاشان ذکر کرد و ادامه داد: در پاششهای 3، 6، 9 و 12 ماهه که تحت نظارت مرکز تحقیقات بیابان زدایی انجام شد تاییدیههای ارزیابی فنی گرفته و موفقیت طرح به صورت مکتوب اعلام شد. برادران به جزئیات پلیمر زیست تخریب پذیر تولید شده برای مهار ریزگردها اشاره کرد و یادآور شد: مواد این طرح بر خلاف طرحهای مشابه وارداتی نیست بلکه از مواد سلولزی گرفته شده از طبیعت ساخته شد و این قابلیت را دارد که در محل بیابان تولید تا هزینههای حمل و نقل حذف شود. مجری طرح، با تاکید بر اینکه در این طرح به محض پاشش مالچهای پلیمر سلولزی نانو سلوفید میتوان اقدام به کاشت گیاه کرد، خاطر نشان کرد: با استفاده از این پلیمر میزان آب دهی به گیاهان کاهش مییابد و مواد مغذی که در این پلیمر وجود دارد به مرور زمان در اختیار گیاه قرار داده میشود. وی با تاکید بر اینکه مالچ تولید شده بی رنگ و بی بو است، اضافه کرد: ماده تولید شده مقاومت زیادی در برابر باد دارد به گونهای که در منطقه "ریگ بلند" بادهای 90 کیلومتر بر ساعت و بالاتر وزش دارد که پلیمر تولید شده مقاوم در برابر این بادها بوده است. این محقق، عدم انتشار و آزاد سازی ترکیبات عالی به محیط زیست به دلیل طبیعی بودن را از دیگر مزایای این ترکیبات نام برد و اضافه کرد: نتایج نشان داد که در زمان پاشش اثری بر روی تنوع زیستی منطقه نداشته است و برای موجودات زنده منطقه چون سوسکها و مارمولکها تغییراتی ایجاد نشد ضمن آنکه دیده شد که پس از پاشش پوشش گیاهی خوبی مناسب و تنوع زیستی افزایش یافت. برادران مقاومت در برابر نور خوشید را از دیگر مزایای مالچ پلیمری نام برد و گفت: به دلیل مقاومت پلیمر زیست تخریب پذیر تولید شده، این مالچ تنها یک بار برای همیشه در منطقه پاشیده می*شود. وی با تاکید بر اینکه مالچ زیست تخریب جایگزین مناسبی با مالچهای نفتی است، توضیح داد: استفاده از مالچهای نفتی علاوه بر سیاه بودن رنگ آن که باعث میشود دمای خاک به میزان 20 درجه افزایش یابد و همراه با وزش باد فرآوردههای نفتی موجود در این نوع مالچها را به سمت شهرها وارد میکند در حالی که مالچهای زیستی این مشکلات را برطرف کرده است. مجری طرح از اجرای پاشش این پلیمر در پایلوت های بزرگتر 100 هکتاری خبر داد و اظهار داشت: با اجرای این طرح از کشورهای منطقه که کانون ریزگردها هستند دعوت خواهد شد تا از این پایلوتها بازدید کنند و این کشورها نیز با همکاری ایران اقداماتی را در زمینه کاهش ریزگردها اجرایی کنند. منبع:مجله بسپار
  20. سلام به همه ی دوستان قراره تو این تاپیک اطلاعات مربوط به "مواد اولیه صنایع پلاستیک" رو قرار بدم این مواد ارزش و اهمیت بسیاری دارند چون به صورت خیلی گسترده در کالا های مختلف و بسته بندی و... مورد استفاده قرار می گیرند و نقش مهمی در قیمت کالا ها و اقتصاد دارند به طور مثال ، قسمت عمده ی گران شدن شیر (سابقاً) مربوط به گران شدن موادی بود که برای بسته بندی اون استفاده میشد... +از دوستان تقاضا دارم اگه اطلاعات بیشتری دارند مطلب رو کامل کنند +هر چند روز یکبار یک ماده جدید...
  21. بعد از آمدن نسل سوم چاپگرها که طول، عرض و ارتفاع را می‌سنجید، نوبت به نسل چهارم آن‌ها رسیده که علاوه بر این سه عامل فاکتور زمان را هم دخیل می‌کنند. منظور از زمان، زمان چاپ شدن محصول نیست، درواقع بعد زمان در چنین تکنولوژی یعنی که این دستگاه قادر است شکل خود را در زمان مورد نظر طراحی شده تغییر دهد. یک گروه پژوهشی آمریکایی توانسته با الیاف پلیمر حافظه‌دار محصولی را به شکل ماده‌ای مرکب و به صورت چهار بعدی چاپ کنند. با کنترل دقیق نحوه‌ی قرارگیری الیاف در ساختار، این گروه توانست تا محصول مورد نظر را به نحوی بسازد که بتواند بسته به نوع عامل محرک که می‌توانست حرارت، فشار یا حتی آب باشد، شکل خود را در زمان مورد نظر تغییر دهد. البته محققان موسسه فناوری ماساچوست سال گذشته از اولین چاپگر چهاربعدی جهان رونمایی کرده بودند. این محققان توانستند یک شیوه چاپ چهاربعدی اجسام قابل برنامه ریزی را به وجود بیاورند که خود مونتاژ هستند. این چاپگر چهاربعدی به جای چاپ یک جسم کامل، یک رشته از چندین ماده را ایجاد کرده که با قرار دادن آن در آب قابل تا شدن و تبدیل به شکل‌های مختلف است. این برنامه که با خواص مختلف در سطح ذرات در درون هندسه سه بعدی مهندسی شده، به خود مونتاژهای شبیه سازی شده و بهینه سازی محدودیت های طراحی منجر خواهد شد. دانشمندان تاکنون تنها توانسته اند یک مکعب و همچنین حروف mit را از این طریق بسازند، اما به گفته سازندگان، این شیوه خود مونتاژ از کاربرد زیادی برای معماری و دیگر حوزه‌ها برخوردار است. این فناوری فقط در پروژه‌های با مقیاس کوچک کاربرد نداشته و در آینده می توان از آن برای ساخت پروژه های معماری بزرگ مانند آسمان خراش‌ها، ساختمان یا حتی سکونتگاه‌های ماه بهره برد. منبع: پینا
  22. مهندسان شیمی و نفت دانشگاه‌ صنعتی شریف موفق به ارائه فیلم نانوبیوکامپوزیتی مناسب برای بسته بندی مواد غذایی شدند. ستاد نانو می نویسد، امیر حیدری، دانشجوی دوره دکتری مهندسی شیمی دانشگاه صنعتی شریف و عضو هیات علمی گروه مهندسی شیمی دانشکده فنی و مهندسی دانشگاه محقق اردبیلی در مورد این تحقیقات گفت: یافته‌های این تحقیق در قالب یک مقاله ارائه شده که بخشی از دستاوردهای پایان‌نامه دکتری من تحت عنوان «ساخت و مطالعات خواص مکانیکی و زیست تخریب پذیری فیلم نانوبیوکامپوزیتی برای بسته‌بندی مواد غذاییِ» است. این پایان نامه در خصوص تأثیر فرمولاسیون (میزان نانوذرات سدیم مونت موریلونیت و گلیسرول) بر خصوصیات کاربردی فیلم‌های حاصل از نشاسته ذرت است. قسمت اعظم این پایان نامه در خصوص زیست تخریب پذیری فیلم‌های حاصله و تأثیر فرمولاسیون بر کاهش و یا افزایش آن است و سایر دستاوردهای این پایان نامه در قالب دو مقاله دیگر یکی در خصوص زیست تخریب پذیری در خاک و دومی در خصوص تخریب آنزیمی و مباحث میکروبی در دست داوری هستند. وی یادآور شد: در این تحقیق طرح مرکب مرکزی (Central Composite Design) برای بررسی تأثیر میزان حضور گلیسرول در سه سطح به عنوان نرم‌کننده و سدیم مونت موریلونیت به عنوان نانوذره نیز در سه سطح استفاده شده است. در ادامه برای تحلیل نتایج نیز روش سطح پاسخ برای بررسی تأثیر فرمولاسیون در تغییر خصوصیات فیلم‌های حاصله مورد استفاده قرار گرفته است. هدف اصلی این مقاله، ارائه نتایج کاربردی در زمینه بسته‌بندی و مسائل زیست‌محیطی است. حیدری افزود: فیلم‌های حاصله بر اساس روش حلالی بر اساس فرمولاسیون گلیسرول و سدیم مونت موریلونیت، سه مرتبه تهیه شدند و آزمایش‌های مورد نیاز انجام گرفت. میانگین نتایج آزمایش‌های انجام گرفته با تست دانکن (Duncan test) در سطح اطمینان 95 درصد و همچنین روش سطح پاسخ مورد بررسی قرار گرفتند. سه دیدگاه برای این تحقیق در نظر گرفته شد. در ابتدا خواص پلیمری مربوط به این فیلم‌ها مانند استحکام کششی، شفافیت و زاویه تماس بررسی شد. در بخش دوم کاربردهای مرتبط با صنایع غذایی مانند حذف نور ماورای بنفش و خواص آنتی میکروبیال بررسی شد و در بخش آخر نیز جنبه‌های زیست‌محیطی مانند تخریب در خاک و محیط آنزیمی مورد بررسی قرار گرفت. وی خاطرنشان کرد: استفاده از روش سطح پاسخ یکی از نوآوری‌های این مقاله است. با توجه به اینکه تقریبا در اکثر خصوصیات نانوکامپوزیت‌ها تأثیر نرم‌کننده و نانوذرات بر رفتار پلیمرها عکس یکدیگر است، این ایده مطرح شد که به‌ طور همزمان این دو پارامتر و تأثیرات متقابل آنها بر یکدیگر بررسی شود. یکی از نوآوری‌های دیگر این تحقیق، استفاده از روش پردازش تصویر در بررسی میزان شفافیت نمونه فیلم‌های تولیدی است. این روش جایگزین مناسبی برای روش مرسوم یعنی تصویر‌برداری از متن یا تصویر در زیر نمونه‌های پلیمری است. در روش مورد استفاده در این مقاله از روش مشابهی با یکسری تصحیحات استفاده شد. نتایج حاصله به‌ صورت عددی است که قابلیت مقایسه با یکدیگر را دارا هستند. وی در مورد نتایج این تحقیقات نیز تصریح کرد: اگر به اختصار بخواهیم نتایج این قسمت را بیان کنیم، می‌توان به بهبود خواص مکانیکی اشاره کرد. اگرچه بر اساس نتایج به‌ دست آمده تأثیر ذرات سدیم مونت موریلونیت در بهبود خواص مکانیکی به مراتب کمتر از تأثیر گلیسرول در کاهش خواص مکانیکی است که دلیل این امر بواسطه نگهداشت آب در ماتریس پلیمر است. این مساله بواسطه روش تهیه فیلم‌ها به‌ صورت حلالی است که در آن آب به عنوان حلال می‌تواند به عنوان نرم‌کننده نیز ایفای نقش کند. شفافیت و آبدوستی نمونه‌ها با افزایش گلیسرول افزایش پیدا کرده و با حضور نانوذرات کاهش می‌یابد. بر اساس نتایج به‌ دست آمده می‌توان از فیلم‌های پلیمری ساخته شده برای بسته‌بندی مواد غذایی خشک و یا به عنوان بسته‌بندی اولیه که در تماس مستقیم با ماده غذایی است و همچنین در صورت لزوم از بسته‌بندی‌های ثانویه برای جلوگیری از تأثیر‌گذاری رطوبت محیط استفاده کرد. نتایج این کار تحقیقاتی که توسط امیر حیدری، دکتر ایران عالم‌زاده و دکتر منوچهر وثوقی از اعضای هیات علمی دانشکده مهندسی شیمی و نفت دانشگاه صنعتی شریف صورت گرفته، در مجله Materials & Design منتشر شده است. منبع: مجبه بسار
  23. استفاده عملی و اقتصادی در پنج سال اخیر از مهم‌ترین منبع گازهای غیرمتعارف مانند گاز نهفته در سنگ‌های ماسه‌ای (Shale Gas)؛ صنایع گاز، نفت و پتروشیمی را دچار تغییرات و تحولات عمیقی كرده است. این مقاله سعی دارد تا ضمن آشنایی با این منابع جدید گاز، تاثیرات افزایش تولید گاز ماسه‌ای بر صنعت پتروشیمی جهان و ایران را بررسی کند. منابع گازهای غیرمتعارف به ویژه گاز ماسه‌ای از اواخر قرن 19 میلادی برای بشر شناخته شده بود ولی استفاده از منابع گاز ماسه‌ای نیاز به دو فناوری مهم داشت، حفاری افقی و درهم‌شکنی هیدرولیکی. تحقیقات برای انجام حفاری افقی در سال 1970 به نتیجه رسید، اما در سال 2002 بود که اولین چاه افقی در بارنت تگزاس عملی شد. متعاقب آن فناوری درهم‌شکنی هیدرولیکی که به اختصار آن را Fracking هم می‌نامند، امکان رهاسازی گاز از بستر سنگ‌های ماسه‌ای را فراهم کرد؛ اما اوج شکوفایی تولید گاز ماسه‌ای در پنج سال اخیر به وقوع پیوسته است، به طوری که با عملیاتی شدن تولید گاز ماسه‌ای در آمریکا، قیمت گاز در آمریکا از 5/12 دلار در هر میلیون بی تی یو در سال 2008 به حدود 3 دلار در سال 2012 کاهش پیدا کرده است و پیش‌بینی می‌شود این کاهش برای برای یک دوره‌ زمانی کوتاه ادامه داشته باشد. همچنین سهم این نوع گاز در سبد تولید گاز آمریکا در حال افزایش مداوم است به طوری که در سال 2008 سهم گاز ماسه‌ای از کل تولید گاز در آمریکا 10 درصد بوده ولی با توجه به نرخ رشد آن، پیش‌بینی می‌شود که در سال 2025 به رقم 35 درصد برسد.منابع گاز ماسه‌ای منحصر به آمریکا نیست و در بسیاری از مناطق دیگر جهان همچون چین، کانادا، روسیه، اروپای شمالی، آفریقای جنوبی و غیره نیز منابع بزرگی از این نوع گاز نامتداول شناسایی شده است. حتی بر اساس برخی برآوردها بزرگترین منبع ذخیره گاز ماسه‌ای در چین است اما در حال حاضر با توجه به فن‌آوری پیشرفته‌ مورد نیاز برای دسترسی به آن، تولید انبوه آن تنها در آمریکا امکان‌پذیر است. کاربرد اولیه گاز ماسه‌ای در آمریکا، تولید انرژی بود به طوری‌که با توجه به ارزان شدن گاز در كشور اين سهم گاز در تولید الکتریسیته در طول 12 سال (از 2000 تا 2012) سه‌برابر شد و با پیشی گرفتن از دیگر منابع انرژی همچون انرژی هسته‌ای، اکنون پس از زغال سنگ؛ دومین منبع تولید الکتریسیته در آمریکا است. اما با افزایش ظرفیت تولید گاز ماسه‌ای، کاربرد مهمتری نیز ممکن شده و آن استفاده از این منبع به عنوان خوراک برای واحدهای صنایع شیمیایی است. مایعات گاز طبیعی (Natural Gas Liquid-NGL) همواره همراه با تولید گاز به دست می‌آید که معمولا ترکیبی از اتان، پروپان، بوتان و غیره است. مایعات گاز طبیعی همراه با گاز ماسه‌ای، غنی از اتان هستند و افزایش تولید بیش از پیش گاز ماسه‌ای در آمریکا منجر به افزایش ظرفیت بزرگی از اتان شده که آن هم متعاقبا به افزایش تولید اتیلن و مشتقات آن (اعم از پلی اتیلن، اتیلن گلایکول، پلی وینیل کلراید، اتکسیلات‌ها، پلی وینیل الکل و غیره) انجامیده است. با در نظر گرفتن منابع ارزان و فراوان گاز ماسه‌ای، پیش‌بینی می‌شود که قیمت تمام شده‌ اتیلن و مشتقات آن در آمریکا به طرز چشمگیری کاهش یابد. در این راستا پیش‌بینی می‌شود قیمت اتیلن در آمریکا به 316 دلار در هر تن برسد که از اتیلن عربستان با قیمت 455 دلار و آسیا با قیمت 1717 دلار ارزان‌تر شده است. این در حالی است که بدون منابع گاز ماسه‌ای و تاثیر آن بر کاهش قیمت گاز، قیمت اتیلن آمریکا حدود 985 دلار ‌بود. همین کاهش را در مورد پلی اتیلن دانسیته سنگین (HDPE) نیز می‌بینیم. تخمین زده می‌شود که قیمت آن در آمریکا به 542 دلار در هر میلیون تن برسد؛ در حالی‌که قیمت آن در عربستان 713 دلار و در آسیا 2079 دلار است و بدون منابع گاز ماسه‌ای قیمت HDPE در آمریکا حدود 1304 دلار خواهد بود. در مورد اتیلن گلایکول هم همین‌طور است و قیمت آن در آمریکا به 346 دلار در تن خواهد رسید درحالی‌که اتیلن گلایکول تولید عربستان540 دلار در هر میلیون تن و آسیا 1419 دلار قیمت‌گذاری شده‌اند. اگر افزایش تولید گاز ماسه‌ای رخ نداده بود قیمت اتیلن گلایکول در آمریکا حدود 996 دلار بود. حال اگر این کاهش قیمت در محصولات پتروشیمی را با ارزان شدن انرژی در آمریکا همراه کنید، بستر اقتصادی بسیار قابل قبولی برای صنایع شیمیایی و دیگر صنایع مرتبط با آن فراهم مي‌شود که سرمایه‌گذاری‌های بسیار کلان در این عرصه را توجیه‌پذیر کرده است. موقعيتي که سال‌ها بود در آمریکا، در قیاس با دیگر مناطق جهان که از گاز ارزان بهره‌مند بودند، وجود نداشت. در سال 2012 در حدود 15میلیارد دلار تنها در تولید اتیلن در آمریکا سرمایه‌گذاری شده است و انتظار می‌رود با عملیاتی شدن این طرح‌های جدید، در مجموع 33 درصد به ظرفیت تولید اتیلن آمریکا افزوده شده و به رقم 36 میلیون تن اتیلن در سال برسد. در کل تا ماه مارس سال 2013، حدود 7/71 میلیارد دلار سرمایه‌گذاری در صنایع شیمیایی در آمریکا به صورت رسمی اعلام شده است که 2/1 میلیون شغل مستقیم و غیر‌مستقیم را فراهم می‌آورد. هجوم شرکت‌های مختلف برای حضور در این فرصت اقتصادی و سرمایه‌گذاری در صنایع شیمیایی و پتروشیمیایی آمریکا چنان شدت گرفته است که هر روز شاهد اعلام یک سرمایه‌گذاری جدید، ادغام شرکت‌ها، انتقال واحدها از دیگر کشورها و غیره هستيم که کار رصد این همه تغییر را بسیار مشکل کرده است. در حال حاضر غیر از شرکت‌های بزرگ آمریکایی همچون Chevron, Braskem, Dow Chemicals, Dupont,شرکت‌های دیگر کشورها نیز در این سرمایه‌گذاری حضور دارند؛ شرکت‌هایی همچون Shell, Lanxess, Mitsui, Kuraray, Formosa, SABIC . در مارس 2013 خبر انتقال واحد تولید متانول شرکت کانادایی Methanex از شیلی به آمریکا (Geismar, La)با هزینه‌ سرسام‌آور 1/1 میلیارد دلاری، شکل جدیدی از سرمایه‌گذاری در آمریکا برای بهره‌برداری از منابع ارزان و فراوان گاز ماسه‌ای را رقم زد. از سوی دیگر میزان ذخایر گاز قابل برداشت از بستر ماسه‌ای در آمریکا را 862تریلیون فوت مکعب (24 تریلیون متر مکعب) برآورد می‌کنند که تا یک قرن آینده تامین کننده گاز مورد نیاز آمریکا خواهد بود. البته برآوردهای بیشتری نیز در حد هزار و 73 تریلیون فوت‌مکعب مطرح شده است که جای بحث دارد. با توجه به اینکه عمده‌ خوراک پتروشیمی‌ها در اروپا و آسیا از نفتا که اتیلن حاصل از آن بسیار گران‌تر از اتیلن حاصل از گاز است، به دست می‌آید؛ کشورهای اروپایی و آسیایی در رقابت با آمریکا روزگار بسیار سختی را در پیش رو خواهند داشت. حتی در عربستان واحدهای جدید اتیلن به علت کاهش خوراک، از مخلوط اتان-بوتان استفاده می‌کنند که قیمت اتیلن آنها را بالاتر برده است. این روند نه تنها به خارج شدن مشتقات اتیلن (پلی اتیلن، پلی وینیل کلراید و غیره) تولید اروپا و آسیا از بازار آمریکا می‌انجامد بلکه با توجه به ظرفیت رو به رشد این محصولات در آمریکا و اشباع بازار داخلی، شاهد صادرات وسیع این محصولات به خارج از آمریکا نیز خواهیم بود. البته هستند متخصصانی در خارج از آمریکا که اثرات افزایش تولید گاز ماسه‌ای در آمریکا را مبالغه آمیز می‌بینند و با توجه به تاثیرات زیست محیطی برداشت گاز از بستر سنگ‌های ماسه‌ای، این روند را در نهایت صعودی قلمداد نمی‌کنند، ولی در نهایت آمار و ارقام و به خصوص پیشرفت‌های حوزه‌ فناوری این برداشت‌های منفی را تایید نمی‌کنند. آنچه برای صنایع پتروشیمی ایران در این میانه دارای اهمیت است این است که آیا ایجاد واحدهای متعدد پلی اتیلن در ایران در دراز مدت دارای بازدهی قابل قبول خواهد بود یا خیر؟ از مجموع 211 میلیون تن تقاضا برای محصولات مختلف پلیمری در سال 2012، پلی اتیلن با 78 میلیون تن (37 درصد) همچنان پرمصرف‌ترین پلیمر جهان است. آمارها و تخمین‌ها حکایت از آن دارد که در سال 2017 پروژه‌های متعدد پتروشیمیایی و شیمیایی آمریکا (که از خورک اتان حاصل از گاز ماسه‌ای استفاده می‌کنند) به بهره‌برداری رسیده و محصولات خود به خصوص پلی اتیلن را به بازارهای آسیا و اروپا صادر خواهند کرد. از سوی دیگر چین به عنوان بزرگترین بازار محصولات پلیمری، در سال 2012 نیاز داخلی در حدود 18 میلیون تن به پلیمرهای مختلف داشته که حدود 47 درصد آن وارداتی بوده است اما در سال 2016 این بازار داخلی به حدود 24 میلیون تن افزایش پیدا خواهد کرد ولی سهم واردات به 34درصد کاهش می‌یابد که به معنی ثابت ماندن تقریبی مقدار (تناژ) محصولات پلیمیری وارداتی به چین طی 3 سال آینده خواهد بود. این روند به معنی سخت‌تر شدن رقابت در بازار محصولات پتروشیمی به‌ویژه پلی اتیلن است. در کنار این موارد، عملیاتی شدن پروژه‌های بزرگ اتیلن در کشورهای حوزه‌ خلیج فارس و آسیای میانه مشکلات دیگری را برای صادرات پلی اتیلن ایران فراهم خواهند آورد. به نظر می‌رسد که سیاست‌گذاران صنعت پتروشیمی در ایران بايد یک باردیگر پروژه‌های پتروشیمی را از لحاظ اقتصادی ارزیابی کنند و از سرمایه‌گذاری‌های پرخطر و بی‌بازده در این صنعت اجتناب کنند. در غیر این صورت در آینده‌ای بسیار نزدیک حتی با صفر کردن هزینه خوراک (که بی‌گمان عملی نیز نیست) نیز نمی‌توان این واحدهای جدید پتروشیمی را از ورشکستگی نجات داد. منبع: پینا
  24. unstoppable

    مسیر ستاره ای

    مبتکران انگلیسی نوعی پوشش ضد آب و فوری برای سطوح پیاده رو و پارک ها ساخته ند که نور فرانبفش را طی روز جذب و در شب آزاد می کند. این فناوری در یکی از پارکهای شهر کمبریج در حال آزمایش است و می تواند یک جایگزین کم هزینه برای روشنایی معمولی خیابانها باشد. مدتی است که از فناوری های خورشیدی بر پشت بام ها استفاده می کنیم اما دیگر سطوحی که به اندازه کافی تحت تابش خورشید قرار می گیرند از جمله پیاده رو ها نیز برای قابلیت جذب انرژی را داشته و می توان از آنها نیز استفاده کرد. شیوه ابتکاری محققان انگلیسی که "مسیر ستاره ای" نام دارد، برق تولید نمی کند اما جایگزین مناسبی را برای روشنایی خیابانها فراهم می آورد که هزینه های نصب و حفظ و نگهداری بسیار اندکی دارد چرا که فقط باید آن را بر روی سطوح کنونی اسپری کرد و سپس آن را با پوشش ضد آب پوشاند. بر اساس اعلام شرکت سازنده این پوشش نور فرابنفش خورشید را طی روز جذب و ذخیره سازی می کند و ذرات آن قادرند نور طبیعی موجود را تنظیم کرده و با شدت مناسبی به درخشش وادارند. این پوشش در حال حاضر در پارکی در مرکز کمبریج تحت آزمایش قرار دارد. در این پارک منطقه ای با وسعت 150 متر مربع به این پوشش تجهیز شده است. اسپری کردن این پوشش فقط 30 دقیقه طول می کشد و چهار ساعت زمان می برد تا این سطوح برای استفاده آماده شود. نیل بلکمور مدیر فروش شرکت Pro-Teq می گوید این پوشش سطحی بر روی سطوح آسفالت یا بتنی بهترین عملکرد را دارد. وقتی این پوشش به آخر عمر مفید خود می رسد می توان دوباره آن را احیا کرد. مسیر ستاره ای طوری طراحی شده است که مردم روی آن سر نمی خورند و مانع از زمین خوردن مردم در شب می شود. همچنین با این پوشش دیگر نیازی به ترسیم خطوط رنگی برای تقسیم مسیر نیست. این پوشش همچنین غیر بازتابنده است و وب سایت این شرکت فهرستی از 11 رنگ مختلف را برای این پوشش عرضه کرده است. این در حالی است که در ماه های زمستانی سال ممکن است مشکلاتی برای این پوشش پیش اید چرا که نور خورشید طی روز ،کمتر، و برف مانع از رسیدن نور خورشید به مسیر می شود. منبع: مجله بسپار
×
×
  • جدید...