مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه ها
تبلیغات
آفرینش

تهران سازان

جملات کاربران:
برخی از محصولات فروشگاه نواندیشان بهترین مدیر، مسئول و کاربر انجمن در مردادماه
مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هاطرح توجیهی کویرنوردی یزد مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه کد کامل تهران به صورت قطعه بندی شده مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هامجموعه کامل آموزش Solidworks مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه ها مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه ها
مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 1 تهران مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه کد نقشه gis منطقه 15 تهران مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 17 تهران
مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 2 تهران مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه GIS کل تهران مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 6 تهران
مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 3 تهران مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 11 تهران مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه هانقشه gis منطقه 12 تهران sam arch آرتاش

جديد ترين اطلاعیه های انجمن نواندیشان و اخبار همایش ها و مطالب علمی را از این پس در کانال تلگرام نواندیشان دنبال کنيد

درخواست و دانلود مقالات علمي رايگان | فهرست آموزش های گروه انقلاب آموزشی | مسابقات تالارها | ترجمه مقالات تخصصی با قیمت دانشجویی
صفحه 8 از 16 نخستنخست ... 456789101112 ... آخرینآخرین
نمایش نتایج: از شماره 71 تا 80 , از مجموع 151

موضوع: مرجع:همه چیز در مورد انواع و نحوه عملکرد نیروگاه ها

  1. #71
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    مولدهاي بخاري



    اين نوع نيروگاهها ( توربين ها ) از نظر فشار بخار توليدي در بويلر و بخار مصرفي در توربين بدو دسته عمده تقسيم مي گردند .
    در توربين هاي از نوع فشار ثابت (constant pressure) بويلر و توربين هيچ نوع انعطافي از خودنشان نمي دهند و لذا از اين نوع توربين ها ( نيروگاهها ) در جهت توليد بار پايه استفاده مي گردد.
    در توربين هاي از نوع فشار متغير (sliding pressure ) مي توان بر روي بويلر و توربين ، تغييرات فشار را اعمال نمود . اين نوع مولدها معمولا جهت توليد بار مياني هفته بکار مي روند .
    قدرت قابل دسترسي اين نوع مولدها از چند مگا وات تا يک هزار مگاوات متغير است . هزينه سرمايه گذاري براي هر کيلو وات قدرت نصب شده متناسب با حجم تجهيزات کمکي و قدرت واحد و نوع آن از پانصد تا يک هزار دلار متغير است و مدت زمان اجراي آن معمولاٌ پنج سال طول مي کشد .

    از آنجائي که در اين نوع نيروگاهها هزينه قدرت نصب شده به ازاي هر کيلو وات با افزايش قدرت واحد ، کاهش مي يابد ِ، از اين رو سير افزايش قدرت قابل ساخت و نصب اين نوع واحدها از سرعت بيشتري برخوردار است . لازم به توضيح است که راندمان اين نوع نيروگاهها تا 40 درصد هم مي رسد .
    روش توليد برق در اين نوع نيروگاهها به اين ترتيب است که سوخت فسيلي ( ذغال سنگ ،گاز، گازوئيل، مازوت ) بوسيله مشعل هاي خاصي ، به محفظه اي بنام کوره ، پاشيده مي گردد و با اشتعال آن در مجاورت هوا که بوسيله فن هاي بزرگي تامين مي شود ، حرارت قابل توجهي در اين محفظه توليد مي گردد. حرارت حاصله، آب ( گرمي ) راکه با پمپ از داخل لوله هاي تعبيه شده در آن عبور مي کند پس از طي مراحلي به بخاري با درجه حرارت بالا و فشار زياد که در اصطلاح به آن بخار خشک مي گويند ، تبديل مي نمايد. بخار خشک حاصله پس از خروج از کوره وارد توربين مي شود.
    بخار وارده به توربين آن را به حرکت در مي آورد و ژنراتور را که با توربين هم محور و کوپله است به همراه آن به گردش در مي آيد و جريان برق توليد مي شود . بخار ورودي به توربين با از دست دادن بخش عمده اي از حرارت و فشار خود وارد محوطه اي بنام کندانسور مي شود .در کندانسور اين بخار به لحاظ تماس با سطح سرد ، تقطير مي شود و به آب تبديل مي گردد .آب تقطير شده مجدداً از هيتر هاي متعددي عبور داده شده و گرم مي شود و در نهايت توسط پمپ مجدداً به درون کوره هدايت مي شود و سيکل خود را دوباره طي مي کند .
    آب خنک کن ( آبي که جهت ايجاد سطوح سرد در کنداسور بکار مي رود ) که خود ضمن سرد کن بخار خروجي از توربين ، گرم شده است به برج خنک کن هدايت مي شود و پس از خنک شدن دوباره به مدار خود باز مي گردد.


    راندمان نيروگاههاي بخاري در حدود 40 درصد است . تقريبا 10 درصد انرژي در اگزوز و 50 درصد نيز از طريق كندانسور تلف مي شود .
    !


  2. # ADS
    Circuit advertisement
    تاریخ عضویت
    Always
    نوشته ها
    Many
    آفرینش گستر
     

  3. #72
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    نيروگاههاي هسته اي

    بخش اول

    نيروگاههاي هسته اي حدود 17 درصد برق را تأمين مي کنند برخي کشورها براي توليد نيروي الکتريکي خود، وابستگي بيشتري به انرژي هسته اي دارند. براساس آمار آژانس انرژي اتمي، 75 درصد برق کشور فرانسه در نيروگاههاي هسته اي توليد مي شود و در ايالات متحده، نيروگاههاي هسته اي 15 درصد برق را تأمين مي کنند. بيش از چهارصد نيروگاه هسته اي در سراسر دنيا وجود دارد که بيش از يکصد عدد آنها در ايالات متحده واقع شده است. يک نيروگاه هسته اي بسيار شبيه به يک نيروگاه سوخت فسيلي توليد کننده انرژي الکتريکي است و تنها تفاوتي که دارد، منبع گرمايي توليد بخار است. اين وظيفه در نيروگاه هسته اي برعهده رآکتور هسته اي است.
    رآکتور هسته اي
    همه رآکتورهاي هسته اي تجاري از طريق شکافت هسته اي گرما توليد مي کنند. همانطور که مي دانيد، شکافت اورانيوم نوترون هاي زيادي آزاد مي کند، بيشتر از آنکه لازم باشد. اگر شرايط واکنش مساعد باشد فرآيند به طور خود به خودي انجام مي شود و يک زنجيره از شکافت هاي هسته اي به وجود مي آيد. نوترونهايي که از فرآيند شکافت آزاد مي شوند، بسيار سريعند و هسته هاي ديگر نمي توانند آنها را به راحتي جذب کنند. از اين رو در اکثر رآکتورها قسمتي به نام کند کننده نوترون وجود دراد که در آن از سرعت نوترونها کاسته مي شود و در نتيجه نوترونها به راحتي جذب مي شوند. چنين نوترونهايي آن قدر کند مي شوند تا با هسته راکتور به تعادل گرمايي برسند. نام گذاري اين نوترونها به نوترونهاي گرمايي يا نوترونهاي کند هم از همين رو است.
    مقدار انرژي گرمايي که در يک رآکتور پارامتر بحراني است و با کنترل آن مي توان رآکتور را در حالت عادي نگاه داشت. اين کار با تنظيم تعداد ميله هاي کنترل درون رآکتور صورت مي گيرد. ميله کنترل از مواد جذب کننده نوترون ساخته شده است و با افزايش يا کاهش جذب نوترون، مي توان گسترش واکنش زنجيره اي را کاهش يا افزايش داد. البته با استفاده از کند کننده هاي نوترون يا تغيير دادن نحوه قرار گيري ميله هاي سوخت هم مي توان انرژي خروجي رآکتور را کنترل کرد.

    طراحي يک رآکتور
    رآکتورهاي هسته اي براي انجام واکنش هاي هسته اي در مقياس وسيع طراحي مي شوند. گرما، اتمهاي جديد و تابش بسيار شديد نوترون، محصولات واکنش انجام شده در رآکتور هستند و بسته به استفاده اي که از رآکتور مي شود، از يکي از محصولات استفاده مي شود. در يک نيروگاه هسته اي توليد برق از انرژي گرمايي توليد شده براي چرخاندن توربين و درنهايت توليد انرژي الکتريکي استفاده مي شود. در برخي رآکتورهاي نظامي و آزمايشي بيشتر از باريکه نوترون پر انرژي استفاده مي شود تا مواد ساده را به عناصر کم ياب و جديدي تبديل کنند.
    هدف از رآکتور هر چه باشد، براي به دست آوردن اين محصولات لازم است يک واکنش هسته اي زنجيره اي به طور پيوسته ادامه يابد. براي ادامه يک واکنش زنجيره اي هم رآکتور بايد در حالت بحراني يا فوق بحراني قرار داشته باشد. کند کننده و وسيله کنترل در فراهم آوردن چنين شرايطي نقش بسيار مهمي برعهده دارند.
    رآکتوري که از کند کننده استفاده مي کند، رآکتور گرمايي يا رآکتور کند ناميده مي شود. اين رآکتورها با توجه به نوع کند کننده اي که مورد استفاده قرار مي گيرد طبقه بندي مي شوند. آب معمولي ( آب سبک )، آب سنگين و گرافيت، مواد رايج کند کننده هستند. البته گرافيت مشکلات فراواني را به وجود مي آورد و بسيار خطرآفرين است، مانند حادثه انفجار چرنوبيل يا آتش سوزي وانيدسکيل.
    رآکتورهايي که از کند کننده ها استفاده نمي کنند، رآکتورهاي سريع خوانده مي شوند. در اين نوع رآکتورها فشار ذرات نوترون بسيار بالا است و از اين رو مي توان برخي واکنش هاي هسته اي را در آنها انجام داد که ترتيب دادن آنها در رآکتور کند بسيار مشکل است. شرايط خاصي که در رآکتورهاي سريع وجود دارد، سبب مي شود بتوان هسته اتم توريوم و برخي ايزوتوپ هاي ديگر را به سوخت هسته اي قابل استفاد تبديل کرد. چنين رآکتوري مي تواند سوختي بيش از حد نياز خود را توليد کند و به همين دليل به آن رآکتور سوخت ساز هم گفته مي شود.

    در همه رآکتورها، قلب رآکتور که دماي بسيار زيادي دارد بايد خنک شود. در يک نيروگاه هسته اي، سيستم خنک ساز به نوعي طراحي مي شود که از گرماي آزاد شده به بهترين شکل ممکن استفاده شود. در اغلب اين سيستمها از آب استفاده مي شود. اما آب نوعي کند کننده هم محسوب مي شود و از اين رو نمي تواند در رآکتورهاي سريع مورد استفاده قرار گيرد. در رآکتورهاي سريع از سديم مذاب يا نمک هاي سديم استفاده مي شود و دماي عملياتي خنک ساز بالاتر است. در رآکتورهايي که براي تبديل مورد طراحي شده اند، به راحتي گرماي آزاد شده را در محيط آزاد مي کنند.
    در يک نيروگاه هسته اي، رآکتور کند منبع آب را گرم مي کند و آن را به بخار تبديل مي کند. بخار آب توربين بخار را به حرکت در مي آورد ، توربين نيز ژنراتور را مي چرخاند و به اين ترتيب انرژي توليد مي شود. اين آب و بخار آن در تماس مستقيم با راکتور هسته اي است و از اين رو در معرض تابش هاي شديد راديواکتيو قرار مي گيرند. براي پيشگيري از هر گونه خطر مرتبط با اين آب راديواکتيو، در برخي رآکتورها بخار توليد شده را به يک مبدل حرارتي ثانويه وارد مي کنند و از آن به عنوان يک منبع گرمايي در چرخه دومي از آب و بخار استفاده مي کنند. بدين ترتيب آب و بخار راديواکتيو هيچ تماسي با توربين نخواهند داشت.

    انواع رآکتورهاي گرمايي
    در در رآکتورهاي گرمايي علاوه برکند کننده، سوخت هسته اي ( ايزوتوپ قابل شکافت القايي)، مخزن بخار و لوله هاي منتقل کننده آن، ديواره هاي حفاظتي و تجهيزات کنترل و مشاهده سيستم رآکتور نيز وجود دارند. البته بسته به اين که اين رآکتورها از کانالهاي سوخت فشرده شده، مخزن بزرگ بخار يا خنک کننده گازي استفاده کنند، مي توان آنها را به سردسته تقسيم کرد.
    الف – کانالهاي تحت فشار در رآکتورهاي RBMK و CANDU استفاده مي شوند و مي توان آنها را در حال کارکردن رآکتور، سوخت رساني کرد.
    ب – مخزن بخار پرفشار داغ، رايج ترين نوع رآکتور است و در اغلب نيروگاههاي هسته اي و رآکتورهاي دريايي ( کشتي، ناوهواپيمابر يا زيردريايي ) از آن استفاده مي شود. اين مخزن مي تواند به عنوان لايه حفاظتي نيز عمل کند.
    ج – خنک سازي گازي: در اين رآکتورها به جاي آب، از يک سيال گازي شکل براي خنک کردن رآکتور استفاده مي شود. اين گاز در يک چرخه گرمايي با منبع حرارتي راکتور قرار مي گيرد و معمولاً از هليوم براي آن استفاده مي شود، هر چند که نيتروژن و دي اکسيد کربن نيز کاربرد دارند. در برخي رآکتورهاي جديد، رآکتور به قدري گرما توليد مي کند که گاز خنک کن مي تواند مستقيما يک توربين گازي را بچرخاند، در حالي که در طراحي هاي قديمي تر گاز خنک کن را به يک مبدل حرارتي مي فرستادند تا در يک چرخه ديگر، آب را به بخار تبديل کند و بخار داغ، يک توربين بخار را بگرداند.

    بقيه اجزاي نيروگاه هسته اي
    غير از رآکتور که منبع گرمايي است، تفاوت اندکي بين نيروگاه هسته اي و يک نيروگاه حرارتي توليد برق با سوخت فسيلي وجود دارد.
    مخزن بخار تحت فشار معمولا درون يک ساختمان بتوني تعبيه مي شود که اين ساختمان به عنوان يک سد حفاظتي در برابر تابش راديواکتيو عمل مي کند. اين ساختمان هم درون يک مخزن بزرگتر فولادي قرار مي گيرد. هسته رآکتور و تجهيزات مرتبط با آن درون اين مخزن فولادي قرار گرفته اند و کارکنان مي توانند راکتور را تخليه يا سوخت رساني کنند. وظيفه اين مخزن فولادي، جلوگيري از نشت هر گونه گاز يا مايع راديواکتيو از درون سيال است.
    در نهايت اين مخزن فولادي هم به وسيله يک ساختمان بتوني خارجي محافظت مي شود. اين ساختمان به قدري محکم است که در برابر اصابت يک هواپيماي جت مسافربري ( مشابه حادثه يازده سپتامبر ) هم تخريب نمي شود. وجود اين ساختمان حفاظتي دوم براي جلوگيري از انتشار مواد راديواکتيو در اثر هرگونه نشت از حفاظ اول ضروري است. در حادثه انفجار چرنوبيل، فقط يک ساختمان حفاظتي وجود داشت و همان موجب شد موادراکتيو در سطح اروپا پخش شود.

    رآکتورهاي هسته اي طبيعي
    در طبيعت هم مي توان نشانه هايي از رآکتور هسته اي پيدا کرد، البته به شرطي که تمام عوامل مورد نياز به طور طبيعي در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده يک رآکتور هسته اي طبيعي دو ميليارد سال پيش در منطقه اوکلو در کشور گابون ( قاره آفريقا ) فعاليتش را آغاز کرده است. البته ديگر چنين رآکتورهايي روي زمين شکل نمي گيرند، زيرا واپاشي راديواکتيو اين مواد ( به خصوص U-235 ) در اين زمان طولاني 5/4 ميليارد ساله ( سن زمين )، فراواني U-235 را در منابع طبيعي اين رآکتورها بسيار کاهش داده است، به طوري که مقدار آن به پايين تر از حد مورد نياز آغاز يک واکنش زنجيره اي رسيده است.
    اين رآکتورهاي طبيعي زماني شکل گرفتند که معادن غني از اورانيوم به تدريج از آب زيرزميني يا سطحي پر شدند. اين آب به صورت کند کننده عمل کرد و واکنش هاي زنجيره اي شديدي به وقوع پيوست. با افزايش دما، آب کند کننده بخار مي شد و رآکتور خاموش شد. پس از مدتي، اين بخارها به مايع تبديل مي شدند و دوباره رآکتور به راه مي افتاد. اين سيستم خودکار و بسته، يک رآکتور را کنترل مي کرد و براي صدها هزار سال، اين رآکتور را فعال نگاه مي داشت.
    مطالعه و بررسي اين رآکتورهاي هسته اي طبيعي بسيار ارزشمند است، زيرا مي تواند به تحليل چگونگي حرکت مواد راديواکتيو در پوسته زمين کمک کند. اگر زمين شناسان بتوانند را از اين حرکت ها را شناسايي کنند، مي توانند راه حل هاي جديدي براي دفن زباله هاي هسته اي پيدا کنند تا روزي خداي ناکرده، اين ضايعات خطرناک به منابع آب سطح زمين نشت نکنند و فاجعه اي بشري به بار نياورند.
    !


  4. #73
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    نیروگاه هسته ای
    بخش دوم



    انواع رآکتورهاي گرمايي
    الف – کند سازي با آب سبک:
    a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR)
    b- رآکتور آب جوشان Boiling Water Reactor(BWR)
    c- رآکتور D2G

    ب- کند سازي با گرافيت:
    a- ماگنوس Magnox
    b- رآکتور پيشرفته با خنک کنندي گازي Advanced Gas-Coaled Reactor (AGR)
    c- RBMK
    d- PBMR

    ج – کند کنندگي با آب سنگين:
    a – SGHWR
    b – CANDU

    رآکتور آب تحت فشار، PWR
    رآکتور PWR يکي از رايج ترين راکتورهاي هسته اي است که از آب معمولي هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده مي کند. در يک PWR، مدار خنک اوليه از آب تحت فشار استفاده مي کند. آب تحت فشار، در دمايي بالاتر از آب معمولي به جوش مي آيد، از اين دوچرخه خنک ساز اوليه را به گونه اي طراحي مي کنند که آب با وجود آنکه دمايي بسيار بالا دارد، جوش نيايد و به بخار تبديل نشود. اين آب داغ و تحت فشار در يک مبدل حرارتي، گرما را به چرخه دوم منتقل ميکند که يک نوع چرخه بخار است و از آب معمولي استفاده مي کند. دراين چرخه آب جوش مي آيد و بخار داغ تشکيل مي شود، بخار داغ يک توربين بخار را مي چرخاند، توربين هم يک ژنراتور و در نهايت ژنراتور، انرژي الکتريکي توليد مي کند.
    PWR به دليل دارابودن چرخه ثانويه با BWR تفاوت دارد. از گرماي توليدي در PWR به عنوان سيستم گرم کننده درنواحي قطبي نيز استفاده شده است. اين نوع رآکتور، رايج ترين نوع رآکتورهاي هسته اي است و در حال حاضر، بيش از 230 عدد از آنها در نيروگاههاي هسته اي توليد برق و صدها رآکتور ديگر براي تأمين انرژي تجهيزات دريايي مورد استفاده قرار مي گيرند.
    خنک کننده
    همان طور که مي دانيد، برخورد نوترونها با سوخت هسته اي درون ميله هاي سوخت، موجب شکافت هسته اتمها مي شود و اين فرآيند هم به نوبه خود، گرما و نوترونهاي بيشتري آزاد مي کند. اگر اين حرارت آزاد شده منتقل نشود، ممکن است ميله هاي سوخت ذوب شوند و ساختار کنترلي رآکتور از بين برود ( و البته خطرهاي مرگ آوري که به دنبال آن روي مي دهند. ) در PWR، ميله هاي سوخت به صورت يک دسته در ساختاري، ترسيمي قرار گرفته اند و آب از کف رآکتور به بالا جريان پيدا مي کند. آب از ميان اين ميله هاي سوخت عبور مي کند و به شدت گرم مي شود، به طوري که به دماي 325 درجه سانتي گراد مي رسد. درمبدل حرارتي، اين آب داغ موجب داغ شدن آب در چرخه دوم مي شود و بخاري با دماي 270 درجه سانتي گراد توليد مي کند تا توربين را بچرخاند.

    کند کننده
    نوترونهاي حاصل از يک شکافت هسته اي بيش از آن حدي گرمند که بتوانند يک واکنش شکافت هسته اي را آغاز کنند. انرژي آنها را بايد کاهش داد تا با محيط اطراف خود به تعادل گرمايي برسند. محيط اطراف نوترونها ( قلب رآکتور ) دمايي در حدود 450 درجه سانتي گراد دارد.
    در يک PWR، نوترونها در پي برخورد با مولکولهاي آب خنک ساز، انرژي جنبشي خود را از دست مي دهند؛ به طوري که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محيط هم دما مي شوند. در اين حالت، احتمال جذب نوترونها از سوي هسته U-235 بسيار زياد است ودر صورت جذب، بالافاصله هسته U-236 جديد دچار شکافت مي شود.
    مکانيسم حساسي که هر رآکتور هسته اي را کنترل مي کند، سرعت آزاد سازي نوترونها در طول يک فرآيند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زيادي انرژي آزاد مي شود. نوترونهاي آزاد شده اگر با هسته U-235 ديگري برخورد کنند، شکافت ديگري را سبب مي شوند و در نهايت يک واکنش زنجيره اي روي مي دهد. اگر تمام اين نوترونها در يک لحظه آزاد شوند، تعدادشان به قدري زياد مي شود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژي، دماي يک سيستم را تعيين مي کند. معادله بوتنرمن، اين ارتباط را توصيف مي کند. ) خوشبختانه برخي از اين نوترونها پس از يک بازه زماني نه چندان کوتاه ( حدود يک دقيقه ) توليد مي شوند و سبب مي شوند ديگر عوامل کنترل کننده از اين تاخير زماني استفاده کرده، اثر خود را داشته باشند.
    يکي از مزيت هاي استفاه از آب در PWR، اين است که اثر کند سازي آب با افزايش دما کاهش مي يابد. در حالت عادي، آب در فشار 150 برابر فشار يک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دماي 325 درجه سانتي گراد مي رسد. درست است که آب با فشار پانزده مگا پاکسال در اين دما جوش نمي آيد، ولي به شدت از خاصيت کند کنندگي اش کاسته مي شود، بنابراين آهنگ واکنش شکافت هسته اي کاهش مي يابد، حرارت کمتري توليد مي شود و دما پايين مي آيد. دما که کاهش يابد، توان رآکتور افزايش مي يابد و دما که افزايش يابد توان راکتور کاهش مي يابد؛ پس خود سيستم PWR داراي يک سيستم خود تعادلي در رآکتور است و تضمين مي کند توان رآکتور در کمترين ميزان مورد نياز براي تأمين گرماي سيستم بخار ثانويه است.
    در اغلب رآکتورهاي PWR، توان رآکتور را در دوره فعاليت معمولي با تغييرات غلظت بورون ( در شکل اسيد بوريک ) در چرخه خنک کننده اوليه کنترل اوليه کنترل مي کنند سرعت جريان خنک کننده اول در رآکتورهاي PWR معمولي ثابت است. بورون يک جذب کننده قوي نوترون است و با افزايش يا کاهش غلظت آن، مي توان شدت فعاليت راکتور را کاهش يا افزايش داد. براي اين کار، يک سيستم کنترلي پيچيده شامل پمپ هاي فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج مي کند، تجهيزات تغيير غلظت اسيد بوريک و تزريق مجدد آب به چرخه خنک ساز مورد نياز است.
    يکي از اشکالات راکتورهاي شکافت، اين است که حتي پس از توقف واکنش شکافت، هنوز هم واپاشي هاي راديواکتيوي انجام مي شود و حرارت زيادي آزاد مي شود که مي تواند راکتور را ذوب کند. البته سيستم هاي حفاظتي و پشتيباني متعددي براي جلوگيري از اين واقعه وجود دارند، با اين حال ممکن است در اثر پيچيدگي هاي اين سيستم، برهمکنش هاي پيش بيني نشده يا خطاهاي عملياتي مرگ آفريني در شرايط اضطراري روي دهند. در نهايت، هر رآکتور با يک حفاظ ساختماني بتوني احاطه شده است که آخرين سد در برابر تشعشعات راديواکتيو است.

    رآکتور آب جوشان، BWR
    در رآکتور آب جوشان، از آب سبک استفاده مي شود. آب سبک، آبي است که در آن فقط هيدروژن معمولي وجود دارد. ) BWR اختلاف زيادي با رآکتور آب تحت فشار ندارد، غير از اينکه در BWR فقط يک چرخه خنک کننده وجود دارد و آب مستقيما در قلب راکتور به جوش مي آيد. فشار آب در BWR کمتر از PWR است، به طوري که در بيشترين مقدار به 75 برابر فشار جو مي رسد ( 5/7 مگا پاسکال ) و بدين ترتيب آب در دماي 285 درجه سانتي گراد به جوش مي آيد.
    رآکتور BWR به شکلي طراحي شده که بين 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالاي آن قرار مي گيرد. بدين ترتيب عملکرد بخش بالايي و پاييني هسته رآکتور با هم تفاوت دارند. در بخش بالايي قلب رآکتور، کند سازي کمتري صورت مي گيرد و در نتيجه بخش بالايي کمتر است.
    در حالت کلي دو مکانيسم براي کنترل BWR وجود دارد: استفاده از ميله هاي کنترل و تغيير جريان آب درون راکتور.
    الف – بالا بردن يا پايين آوردن ميله هاي کنترل، روش معمولي کنترل توان رآکتور در حالت راه اندازي رآکتور تا رسيدن به 70 درصد حداکثر توان است. ميله هاي کنترل حاوي مواد جذب کننده نوترون هستند؛ در نتيجه پايين آوردن آنها موجب افزايش جذب نوترون در ميله ها، کاهش جذب نوترون در سوخت و درنهايت کاهش آهنگ شکافت هسته اي و پايين آمدن توان رآکتور مي شود. بالا بردن ميله هاي سوخت دقيقاً نتيجه معکوس مي دهد.
    ب – تغييرات جريان آب درون رآکتور، زماني براي کنترل رآکتور مورد استفاده قرار مي گيرد که راکتور بين 70 تا صد درصد توان خود کار مي کند. اگر جريان آب درون رآکتور افزايش يابد، حباب هاي بخار در حال جوش سريع تر از قلب راکتور خارج مي شوند و آب درون قلب رآکتور بيشتر مي شود. افزايش مقدار آب به معني افزايش کندسازي نوترون و جذب بيشتر نوترونها از سوي سوخت است و اين يعني افزايش توان راکتور. با کاهش جريان آب درون رآکتور، حباب ها بيشتر در رآکتور باقي مي مانند، سطح آب کاهش مي يابد و به دنبال آن کندسازي نوترونها و جذب نوترون هم کاهش مي يابد و در نهايت توان رآکتور کاهش مي يابد.
    بخار توليد شده در قلب رآکتور از شيرهاي جدا کننده بخار و صفحات خشک کن ( براي جذب هر گونه قطرات آب داغ ) عبور مي کند و مستقيماً به سمت توربين هاي بخار که بخشي از مدار رآکتور محسوب مي شوند، مي رود. آب اطراف رآکتور همواره در معرض تابش و آلودگي راديواکتيو است و از آنجا که توربين هم در تماس مستقيم با اين آب است، بايد پوشش حفاظتي داشته باشد. اغلب آلودگي هاي درون آب عمر کوتاهي دارند ( مانند N16 که بخش اعظم آلودگي هاي آب را تشکيل مي دهد و نيمه عمرش تنها 7 ثانيه است )، بنابراين مدت کوتاهي پس از خاموش شدن رآکتور مي توان به قسمت توربين وارد شد.
    در رآکتور BWR، افزايش نسبت بخار آب به آب مايع درون رآکتور موجب کاهش گرماي خروجي مي شود. با اين حال، يک افزايش ناگهاني در فشار بخار، سبب بروز يک کاهش ناگهاني در نسبت بخار به آب مايع درون رآکتور مي شود که خود، سبب افزايش توان خروجي مي شود. اين شرايط و ديگر حالت هاي خطرساز، موجب شده است از سيستم کنترلي اسيد بوريک ( بورون ) نيز استفاده شود، بدين شکل که در سيستم پشتيبان خاموش کننده اضطراري، محلول اسيد بوريک با غلظت بالا به چرخه خنک کننده تزريق مي شود. خوبي اين سيستم اين است که اسيد اوريک، يک خورنده قوي است و معمولا در PWR سبب مي شود تلفات ناشي از خوردگي قابل توجه باشد. در بدترين شرايط اضطراري که تمام سيستم هاي امنيتي از کار افتاد، هر رآکتور به وسيله يک ساختمان حفاظتي از محيط اطراف جدا شده است. در يک رآکتور BWR جدي، حدود 800 دسته واحد سوخت قرار مي گيرد و در هر دسته بين 74 تا 100 ميله سوخت قرار مي گيرد. اين چنين حدود 140 تن اورانيوم در قلب رآکتور ذخيره مي شود.

    • رآکتور D2G
    رآکتور هسته اي D2G را مي توان در تمام ناوهاي دريايي ايالات متحده مي توان پيدا کرد. D2G مخفف عبارت زيراست:
    رآکتور ناو جنگي D=Destroyer-sized reactor
    نس دوم 2=Second Geneation
    ساخت جنرال الکتريک G= General – Electric built
    بدين ترتيب، D2G را مي توان مخفف اين عبارت دانست: رآکتور هسته اي نسل دوم ويژه ناوهاي جنگي ساخت جنرال الکتريک. اين رآکتور براي توليد حداکثر 150 مگا وات انرژي الکتريکي و عمر مفيد 15 سال مصرف معمولي طراحي شده است.
    در اين رآکتور، براي مخزن بخار دو رآکتور وجود دارد و طوري طراحي شده که بتوان هر دو اتاق توربين را با يک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره مي رسد. اگر يک رآکتور فعال باشد و توربين ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسيد و اگر فقط يک رآکتور فعال باشد ولي توربين ها جدا باشند، سرعت فقط 15 گره خواهد بود.
    !


  5. #74
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    نيروگاه گازي

    از زمان تولد توربينهاي گازي امروزي در مقايسه با ساير تجهيزات توليد قدرت , زمان زيادي نمي گذرد . با اين وجود امروزه اين تجهيزات به عنوان سامانه هاي مهمي در امر توليد قدرت مكانيكي مطرح مي باشند . از توليد انرژي برق گرفته تا پرواز هواپيماهاي مافوق صوت همگي مرهون استفاده از اين وسيله سودمند مي باشند . ظهور توربينهاي گازي باعث پيشرفت زيادي در رشته هاي مهندسي مكانيك , متالورژي و ساير علوم مربوطه گشته است . بطوري كه پيدايش سوپرآلياژهاي پايه نيكل و تيتانيوم به خاطر استفاده آنها در ساخت پره هاي ثابت و متحرك توربينها كه دماهاي بالايي در حدود 1500 درجه سانتيگراد و يا بيشتر را متحمل مي شوند, از سرعت بيشتري برخوردار شد . به همين خاطر امروزه به تكنولوژي توربينهاي گازي تكنولوژي مادر گفته مي شود و كشوري كه بتواند توربينهاي گازي را طراحي كند و بسازد هر چيز ديگري را هم مي تواند توليد كند .

    توربينهاي گازي

    همانطور كه بيان گرديد از اين تجهيزات در نيروگاهها براي توليد برق ( معمولا براي جبران بارپيك) موتورهاي جلوبرنده (هواپيما ,كشتيها و حتي خودروها) , در صنايع نفت و گاز براي به حركت درآوردن پمپها و كمپرسورها در خطوط انتقال فراورده ها و... استفاده مي شود كه امروزه كاربرد توربينهاي گازي در حال گسترش مي باشد .

    اجزاي توربينهاي گازي :
    به طور كلي كليه توربينهاي گازي از سه قسمت تشكيل
    مي شوند :

    1.كمپرسور 2.محفظه احتراق 3.توربين

    كه بنا به كاربرد قسمتهاي ديگري نيز براي افزايش راندمان و كارايي به آنها اضافه مي شود . به عنوان مثال در برخي از موتورهاي هواپيماها قبل از كمپرسور از ديفيوزر و بعد از توربين از نازل استفاده مي شود . كه دراين رابطه بعدها مفصلاً بحث خواهد گرديد
    سيكل توربينهاي گازي :

    سيكل ترموديناميكي توربينهاي گازي سيكل استاندارد هوايي يا برايتون مي باشد كه در حالت ايده ال مطابق شكل زير شامل دو فرايند ايزنتروپيك در كمپرسور و توربين و دو فرايند ايزو بار در محفظه احتراق و دفع گازهاميباشد.
    سيكلهاي توربينهاي گازي در دونوع باز و بسته مي باشند . در سيكل باز گازهاي خروجي از توربين به درون اتمسفر تخليه مي شوند كه اين سيكل بيشتر در موتورهاي هواپيما مورد استفاده قرار مي گيرد . در نوع بسته كه عمدتاً در نيرو گاههاي برق مورد استفاده قرار مي گيرد گازهاي خروجي از توربين ( مرحله 4) از درون بخش دفع گرما (cooler ) عبور كرده و بعد از خنك شدن مجددا وارد كمپرسور گرديده و سيكل تكرار مي شود .
    همانطوركه قبلا بيان گرديد توربينهاي گازي از نظر كاربردي به دو گروه صنعتي و هوايي تقسيم مي شوند كه نوع اول در صنعت و نوع دوم در هوانوردي مورد استفاده قرار مي گيريند .


    توربينهاي گازي صنعتي :

    منظور از توربينهاي گازي صنعتي اشاره به كاربرد آنها غير از بخش هوانوردي مي باشد .

    توربينهاي گازي كه در صنعت برق مورد استفاده قرار مي گيرند داراي ظرفيتهاي متفاوتي مي باشند كه شكل قبل نوعي از اين توربينها با ظرفيت 400 مگاوات را نشان مي دهد.

    توربينهاي گازي هوايي يا موتورهاي جت :
    همانطور كه گفته شد سيكل توربينهاي گازي موتورهاي هواپيما شبيه به توربينهاي گازي صنعتي مي باشد بجز اينكه قبل از ورود هوا به كمپرسور از يك ديفيوزر و بعداز توربين از يك نازي براي بالا بردن سرعت گازهاي خروجي و حركت هواپيما به سمت جلو استفاده مي كنند . اين گازهاي پرسرعت بر هواي خارج از موتور نيرويي وارد مي كنند كه طبق قانون سوم نيوتن نيروي عكس العمل آن سبب حركت هواپيما به سمت جلو مي شود . شايان ذكر است كه نازل در هواپيماهاي جت از نوع متغير مي باشد . يعني دهانه آن با توجه به دبي (گذرجرمي) گازهاي خروجي قابل تغييرو تنظيم است .

    موتورهاي هواپيما انواع مختلفي دارند كه به دو سته كلي تقسيم مي شوند :

    1- موتورهاي پيستوني :
    كه از نظر كاري شبيه به موتور خودروها مي باشند.

    2- موتورهاي توربيني :

    اين موتورها به سه دسته كلي توربوجت, توربوفن و توربوپراپ تقسيم بندي مي شوند.

    توربوجتها اولين موتورهاي جت مي باشند كه امروزه به دليل مسائلي مثل صداي زياد و آلودگي محيط زيست بجز در موارد خاص استفاده اي از انها نمي شود . توربوفنها نوع پيشرفته موتورهاي توربوجت هستند . به اين صورت كه رديف اول كمپرسور در اين موتورها به عنوان فن عمل كرده و مقداري از هواي ورودي به موتور را از اطراف موتور by pass كرده كه اين عمل علاوه بر افزايش نيروي جلوبرندگي باعث كاهش صدا,آلودگي محيطي و ... مي شود .
    در موتورهاي توربوفن با اتصال يك ملخ به گيربكس و سپس به كمپرسور , نيروي جلوبرندگي ايجاد مي شود . در اين حالت سعي مي شود كه بيشترين انرژي جنبشي گازها صرف چرخاندن توربين و از آنجا كمپرسور و در نتيجه ملخ شود . وجود گيربكس به اين خاطر است كه سرعت دوراني ملخ از حد معيني تجاوز نكند . يعني بايد سرعت انتهاي ملخ از عدد ماخ كوچكتر باشد . زيرا سرعتي بيش از اين سبب ايجاد ارتعاشات شديد و در نتيجه شكستگي ملخ مي شود.

    موتورهاي توربوشفت نيز نوعي موتور توربوپراپ مي باشند كه از آنها جهت به حركت درآوردن هليكوپترها استفاده مي شود .بطور كلي موتورهاي توربوپراپ بدليل اينكه در ارتفاع پروازي كم از قدرت زيادي برخوردار هستند از آنها در هواپيماهاي ترابري استفاده مي شود ( مثل C130 )
    !


  6. #75
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    سلام دوستان عزیز
    با توجه به ارتیاط تنگاتنگ مقوله انرژی با تولید نیرو
    کتاب مرجع انرژی رو براتون میزارم
    اخرین ویرایش اون
    موفق باشید

    [میهمان عزیز شما قادر به مشاهده لینک نمی باشید. جهت مشاهده لینک در تالار گفتگو ثبت نام کنید. ]
    !


  7. #76
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    سلام دوستان عزیز
    با اتاق کنترل نیروگاهها اشنا شوید
    موفق باشید

    [میهمان عزیز شما قادر به مشاهده لینک نمی باشید. جهت مشاهده لینک در تالار گفتگو ثبت نام کنید. ]
    !


  8. #77
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    سلام دوستان عزیز
    مقاله ای درزمینه تاثیر سایش وارتعاش برشفتهای دوار

    [میهمان عزیز شما قادر به مشاهده لینک نمی باشید. جهت مشاهده لینک در تالار گفتگو ثبت نام کنید. ]
    !


  9. #78
    کاربر ممتاز

    تاریخ عضویت
    08-12-2009
    نوشته ها
    21,482
    مدیریت
    امتياز طلايي
    35
    سپاس
    132
    2,515 سپاس در 1,506 پست
    امتياز:44167Array


    پیش فرض

    شماتیک نیروگاه هسته ای


    !


  10. #79
    کاربر انجمن

    تاریخ عضویت
    15-09-2009
    نوشته ها
    394
    مهندسی مکانیک
    نیروگاه
    سپاس
    0
    31 سپاس در 20 پست
    امتياز:1648Array

    پیش فرض

    پایان نامه ای در رابطه با نیروگاههای گازی ..........البته بیشتر به گزارش کار آموزی می خوره تا پایان نامه ولی برای اشنایی با نیروگاه خوبه

    [میهمان عزیز شما قادر به مشاهده لینک نمی باشید. جهت مشاهده لینک در تالار گفتگو ثبت نام کنید. ]
    .
    ای ستاره ای ستاره غریب
    ما اگر ز خاطر خدا نرفته ایم
    پس چرا به داد ما نمیرسد
    ما صدای گریه مان به آسمان رسید
    از خدا چرا صدا نمیرسد

    .
    .


  11. #80
    کاربر انجمن

    تاریخ عضویت
    15-09-2009
    نوشته ها
    394
    مهندسی مکانیک
    نیروگاه
    سپاس
    0
    31 سپاس در 20 پست
    امتياز:1648Array

    پیش فرض

    پروژه : سیستم های خنک کنندگی نیروگاه
    فایل pdf
    107 صفحه

    [میهمان عزیز شما قادر به مشاهده لینک نمی باشید. جهت مشاهده لینک در تالار گفتگو ثبت نام کنید. ]
    .
    ای ستاره ای ستاره غریب
    ما اگر ز خاطر خدا نرفته ایم
    پس چرا به داد ما نمیرسد
    ما صدای گریه مان به آسمان رسید
    از خدا چرا صدا نمیرسد

    .
    .


صفحه 8 از 16 نخستنخست ... 456789101112 ... آخرینآخرین

اطلاعات موضوع

کاربرانی که در حال مشاهده این موضوع هستند

در حال حاضر 1 کاربر در حال مشاهده این موضوع است. (0 کاربران و 1 مهمان ها)

موضوعات مشابه

  1. پاسخ ها: 0
    آخرين نوشته: 09-08-2012, 19:10
  2. در ادبیات ایران همه چیز هست، اما کمی از همه چیز!
    توسط Managerr در انجمن مقالات ادبی
    پاسخ ها: 0
    آخرين نوشته: 04-01-2012, 17:05
  3. جوایز افتخار آمیز موسسه ی aia- معماری 2011
    توسط .FatiMa در انجمن معماری جهان
    پاسخ ها: 0
    آخرين نوشته: 28-07-2011, 19:14
  4. میز کنفرانس باور نکردنی /میز دفتر هیبرید توسط Jovo Bozhinovski
    توسط Ali.Akbar در انجمن دکوراسیون داخلی
    پاسخ ها: 1
    آخرين نوشته: 04-02-2011, 22:16

کلمات کلیدی این موضوع

Bookmarks

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •