رفتن به مطلب

ارسال های توصیه شده

پیش بینی زمان ترك خوردگی و مقاومت پیوستگی

 

 

در سازه های بتن آرمه در معرض خوردگی آرماتور

 

 

بررسی اثرات محیط های خورنده شدید بر سازه های بتن آرمه در دو دهه اخیر به شدت مورد توجه قرار گرفته است . مهمترین اثرات اینگونه محیط ها بر سازه های بتن آرمه ، ایجاد ترك در پوشش بتن و كاهش مقاومت پیوستگی می باشد .

در محیط های خورنده ، نفوذ یون كلرید باعث نوعی خوردگی الكتروشیمیایی می شود ، كه در این پروسه فولاد اكسیده می شود . اكسیداسیون فولاد باعث تشكیل مواد مختلفی مانند فروس و فریك می شود كه این محصولات حجم بیشتری از فولاد مصرف شده اشغال كرده و زمانی كه خوردگی ادامه می یابد ، این محصولات در سطح آرماتور انباشته شده و باعث ایجاد فشار انبساطی در بتن اطراف آرماتور می شود . با پیشرفت خوردگی ، فشار ایجاد شده به حدی می رسد كه موجب ایجاد تركهای داخلی در بتن شده و حتی باعث ترك خوردن كل پوشش نیز می شود .

مقاله 8 صفحه ای مربوطه را از لینك زیر دانلود كنید .

 

نویسندگان : عبدالله حسینی _ حسین جدیدیان

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه
  • پاسخ 131
  • ایجاد شد
  • آخرین پاسخ

بهترین ارسال کنندگان این موضوع

بهترین ارسال کنندگان این موضوع

بتن اليافی

 

بتن اليافي در حقيقت نوعي كامپوزيت است كه با به كارگيري الياف تقويت­كننده داخل مخلوط بتن، مقاومت كششي و فشاري آن، فوق‌العاده افزايش مي­يابد. اين تركيب كامپوزيتي، يكپارچگي و پيوستگي مناسبي داشته و امكان استفاده از بتن به عنوان يك مادة شكل­پذير جهت توليد سطوح مقاوم پرانحنا را فراهم مي­آورد. بتن اليافي از قابليت جذب انرژي بالايي نيز برخوردار است و تحت اثر بارهاي ضربه­اي به راحتي از هم پاشيده نمي­شود. شاهد تاريخي اين فناوري، كاربرد كاهگل در بناي ساختمان است. در واقع بتن اليافي نوع پيشرفتة اين تكنولوژي مي‌باشد كه الياف طبيعي و مصنوعي جديد، جانشين كاه و سيمان جانشين گل به كار رفته در تركيب كاهگل شده‌اند.

 

امروزه با استفاده از انواع الياف شيشه، پلي‌پروپيلن، فولاد و بعضاً كربن، توليد انواع بتن­هاي كامپوزيتي در كاربردهاي مختلف صنعتي ممكن گرديده و به‌كارگيري آنها دركشورهاي پيشرفتة دنيا مورد قبول بخش ساختمان و عمران واقع شده است.

 

بتن اليافي خواص مناسبي همچون شكل‌پذيري بالا، مقاومت فوق‌العاده، قابليت جذب انرژي و پايداري در برابر ترك خوردن را دارا مي­باشد كه متناسب با آنها مي­توان موارد كاربرد فراواني براي آن يافت. به طور مثال در ساخت كف سالن‌هاي صنعتي، مي­توان از اين نوع بتن به جاي بتن آرماتوري متداول سود جست اين نوع بتن از بهترين مصالح مورد استفاده در ساخت بناهاي مقاوم‌به‌ضربه، همچون سازه پناهگاه­ها و انبارهاي نگهداري مواد منفجره به شمار مي­رود و بناي شكل گرفته از بتن، قابليت فوق­العاده­اي در جذب انرژي ضربه دارد. همچنين در ساخت باند فرودگاه­ها به خوبي مي­توان از اين نوع بتن كمك گرفت. موارد ديگري از به كارگيري اين بتن، ساخت قطعات پيش ساخته ساختماني همچون پانل­هاي سايبان و يا پاشش بتن روي سطوح انحنا‌دار همچون تونل­ها مي­باشد. به‌كارگيري اين بتن در بناي يك سازه علاوه بر موارد ياد شده از مزايايي همچون عايق بودن سازه در برابر صدا و سرعت بالاي اجرا نيز برخوردار است.

 

اما از آنجا كه نحوه قرار گرفتن الياف داخل بتن كاملاً تصادفي مي­باشد، از اين بتن معمولاً نمي­توان به نحو مطلوبي در ساخت تيرها و ستون‌ها بهره گرفت و در اين نوع سازه­ها استفاده از روش سنتي و شبكه­بندي فولادي به‌صرفه­تر و مناسب­تر مي­باشد. لازم است به اين نكته توجه شود كه ناكارآمدي يك تكنولوژي جديد در نقاط ضعف خود نبايد مانع ناديده گرفتن كاربردهاي مناسب آن در نقاط قوت آن و عدم توجه به آن گردد.

لینک به دیدگاه

نکات حائز اهمیت در سازه های بتنی

 

 

 

 

 

1. باید توجه داشت که خم میلگردها به طرف پائین یا داخل المان و خارج از ناحیه پوشش

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
قرار داشته باشد.

2. عملیات جوشکاری میلگردها در محیطی با دمای زیر -18 درجه سلسیوس مجاز نیست.

3. بعد از پایان پذیرفتن

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
بایستی اجازه داد تا میلگردها به طور طبیعی تا دمای محیط سرد شود،شتاب دادن به فرآیند سرد شدن مجاز نیست.

4. کاربرد همزمان چند نوع فولاد با مقاومت های مشخصه متفاوت در یک المان بتنی مجاز نیست مگر اینکه در نقشه های اجرائی،مهندس محاسب قید کرده باشد.

5. براب مهار میلگردهای فشاری نبایستی از قلاب و خم استفاده نمود.

6. برای میلگردهای با سطح صاف(بدون آج) استفاده از مهارهای مستقیم مجاز نیست.

7. خم کردن میلگردها انتظار باید قبل از قالب بندی انجام گیرد.

8. میلگردهای ساده با قطر بیش از 12 میلیمتر را نباید بعنوان

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
بکار برد.

9. قطر خاموت ها نباید از 6 میلی متر کمتر باشد.

10. مناسب ترین محل قطع و وصله میلگردهای طولی ستون بتنی،در نصف ارتفاع آن است.

11. محل مناسب برای وصله کردن میلگردهای طولی تیرهای بتنی،بیرون از گره

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
با ستون و در محدوده یک چهارم تا یک سوم از طول دهانه از
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
است.

 

اثرات مواد زیان آور بر خواص یتن

 

 

  1. کربنات سدیم » گیرش سیمان را تسریع می کند،با حداکثر غلظت 0.1%
  2. بی کربنات سدیم » گیرش سیمان را تسریع یا کند می کند با حداکثر غلظت 0.4% تا 0.1%
  3. کلرورها » تسریع در زنگ زدگی آرماتور و کابل های پیش تنیدگی.بیش از 0.06% در بتن پیش تنیده و 0.1% در بتن آرمه خطرناک است.
  4. سولفاتها » اثر نامطلوب روی بتن.به ازای هر 1% سولفات در آب،10% کاهش مقاومت بوجود می آید.
  5. فسفاتها،آرسنات ها و براتها » افزایش زمان گیرش.حداکثر غلظت 0.05%
  6. نمک های مس،روی،سرب،منگنز،قلع » افزایش زمان گیرش.حداکثر غلظت 0.05%
  7. آبهای اسیدی » در صورت وجود اسید کلریدریک و اسید سولفوریک و سایر اسیدهای غیرآلی،حداکثر تا 0.1% بلامانع است و آبهای با 4.5
  8. آبهای قلیایی » در صورت وجود بیش از 0.5% هیدروکسید سدیم و 1.2% هیدروکسید پتاسیم ( نسبت به وزن سیمان ) باشد،مقاومت بتن تقلیل می یابد.
  9. آبهای گل آلود » قبل از مصرف از حوضچه های ته نشینی عبور داده و یا به روش دیگر تصفیه کرد.
  10. آب دریا » با حداکثر 3.5% نمک محلول برای ساخت بتن ( بدون آرماتور ) بلامانع است.
  11. مقاومت بتن ساخته شده با آب دریا بین 10% تا 20% کاهش می یابد.

 

 

سنگدانه ها

 

 

  • بهترین منابع سنگدانه ها،در محل رودخانه ها می باشد که بسیار ساده و ارزان استخراج می گردند.
  • دانه های درشت رودخانه ای عموما گرد و دارای دانه بندی مناسب ولی مقاومت بتن ها کمتر می باشند.
  • مصرف سنگدانه های طبیعی (گرد گوشه با سطح صاف) در بتن،کارآئی بهتری می دهد.
  • سنگدانه های شکسته که تیزگوشه می باشند کارآئی کمتر ولی
    برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
    و فشاری بیشتری دارند.
  • بهترین سنگدانه برای تهیه بتن،سنگدانه های سیلیسی هستند.سختی آنها بین 6 تا 7 (از 10 که مربوط به الماس است.) می باشد.ولی برای بتن های معمولی بیشتر از سنگدانه های آهکی استفاده می شود که سختی آنها بین 3 تا 4 است.
  • مقدار آب همراه شن به لحاظ کم بودن آن قابل صرفنظر است ولی آب همراه با ماسه که گاهی به 50 تا 60 لیتر بر مترمکعب ماسه می رسد و قابل ملاحظه است و بایستی در زمان بتن ریزی مورد توجه قرار بگیرد.
  • سنگدانه های مصنوعی که از گرد حاصل از سوزانیدن زباله ها و یا سرباره کوره های ذوب آهن و غیره بدست می آید و حاوی مقادیری فلزات و دیگر مواد سخت می باشند می توان برای ساخت بتن های غیرباربر استفاده نمود.امروزه بیش از 40 درصد بتن های مصرفی در کارگاه باربر نیستند و با استفاده از این روش می توان کمک شایانی به حفظ محیط زیست نمود.

لینک به دیدگاه

محصور كردن بتن توسط آرماتور تحت حالت هسته مركزي در ستون هاي بتن آرمه

 

در حالت كلي المان هاي بتن آرمه تمايل زيادي به ترد شكني دارند و اين پديده در هنگام لرزه (اگر تمهيدات لازمه را رعايت نكرده باشيم) به وضوح نمايان مي گردد. در اين متن فني به بررسي چگونگي شكلپذير شدن ستونهاي بتن آرمه مي پردازيم.

 

مزاياي محصور كردن بتن :

 

افزايش مقاومت بتن : اگر بتن به نحوي مناسب محصور شده باشد و اثر نيروهاي لرزه اي باعث كنده شدن بتن پوششي شود ، بتن محصور شده به خوبي مقاومت مي كند زيرا قسمت دوم منحني تنش كرنش آن از شيب كمي برخوردار مي شود و در نتيجه كرنش مرحله نهايي افزايش مي يابد.

 

روش هاي محصور كردن

بتن غير محصور به دليل مقاومت و كرنش كمتر براي رفتار لرزه اي سازه هاي بتن آرمه مناسب نيست ، از بهترين شيوه براي اين كار مي‌توان به خاموت گذاري به صورت مارپيچ اشاره كرد. در اين حالت خاموت گذاري بعلت پيوستگي در حركت خاموت امكان كمانش ارماتورهاي طولي را به حداقل مي رساند و اين هسته مركزي به وجود امده مي تواند باربري بيشتري را نسبت به ستون با خاموت گذاري موازي داشته باشد. از طرفي امكان ايجاد مفاصل پلاستيك در ستون را كم و اين مفاصل را به داخل تيرها هدايت مي كند و اصل تير ضعيف- ستون قوي را به خوبي رعايت مي كنيم.

 

آرماتور مارپيچ بايستي در فواصل حداقل 2.5 و حداكثر 7.5 سانتي متر (فاصله در ارتفاع كه به آن گام مي گوييم) بسته شود و در ابتداي ستون و انتهاي ستون نيز با چند دور نزديك بهم آغاز و پايان يابد. اين ارماتور مي تواند از6ø يا 8ø استفاده شود.

لینک به دیدگاه

بهبود مقاومت چسبندگی بین فولاد و بتن با استفاده از متیل سلولز در طرح اختلاط بتن

 

 

در این مقاله اثر متیل سلولز به طور مجزا و نیز به همراه میکروسیلیس در مقاومت چسبندگس بین فولاد و بتن مورد بررسی قرار گرفته است . نمونه های بتنی با درصدهای مختلف متیل سلولز ، ترکیب متیل سلولز و میکروسیلیس ، و خالص با سه نوع آب به سیمان مختلف ساخته شده و مقاومت آنها در 28 روزگی بدست آمد . با ساخت نمونه های مشابه بتنی و قرار دادن میلگرد به قطر 18 میلیمتر در آن ، مقاومت چسبندگی بین فولاد و بتن نیز در 28 روزگی بدست آمد .

نتایج آزمایشها نشان می دهد که استفاده از متیل سلولز در حدود 0.6 درصد وزن سیمان در مخلوط بتن ، مقاومت چسبندگی بین فولاد و بتن را افزایش می دهد و استفاده از این ماده با توجه به میزان مصرف کمتر آن در مقایسه با سایر مواد از جمله لاتکس که برای افزایش چسبندگی در طرح اختلاط بتن مورد استفاده قرار می گیرد ، اقتصادی تر است .

 

افزایش چسبندگی بین فولاد و بتن در نتیجه مصرف متیل سلولز به افزایش ویسکوزیته آب اختلاط بتن در اثر حل شدن متیل سلولز در آب و در نتیجه کاهش آب انداختگی و انفکاک بتن مربوط می شود . استفاده توام از متیل سلولز و میکروسیلیس به ترتیب در حدود 0.6 و 10 درصد وزن سیمان به همراه فوق روان کننده در طرح اختلاط بتن ، باعث افزایش توام چسبندگی بین فولاد و بتن ، و افزایش مقاومت فشاری بتن می شود . مقاله 8 صفحه ای مربوطه را از لینک زیر دانلود کنید .

 

smile.gif

 

نویسندگان : دکتر صمد دیلمقانی _ مهندس رسول صیامی .

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

اطلاعات مفید درباره سیمان

 

همیشه زمانی که صحبت از سیمان می شود این سئوال مطرح است که سیمان چیست و چگونه اکسیر آبادانی دست یافته است و آن را به اشکال مختلف به کار می برد.

با اندکی مطالعه و تحقیق بر آن شدم تا علاوه بر تعریفی از این ماده، تقویم پیدایش و سیر تکامل فرمولهای مختلف آن را بیان کنم تا شاید در جهت بالا بردن سطح کمی و کیفی کادر فنی و مجرب صنایع سیمان کشور به کار آید و نکته مهمتر اینکه در فکر توسعه موارد مصرف این ماده اعجاب انگیز برآییم تا اجرای پروژه های کشاورزی، عمرانی، صنعتی و... هر چه سریعتر با بهترین کیفیت به اجرا برسد.

سیمان چیست:

سیمان گردی است نرم، جاذب آب و اینکه قابلیت به هم چسباندن ذرات را به یکدیگر به وجود می آورد که در نتیجه جسم صلب و یکنواختی را پدید می آورد. براین اساس سیمان ترکیبی است از اکسید کلسیم (آهک) با سایر اکسیدها نظیر اکسید آلومینیوم اکسید سیلیسم، اکسید آهن، اکسید منیزیم و اکسیدهای قلیایی که ترکیبی با آب را دارا می باشد و در مجاورت با هوا و همچنین در زیر آب به تدریج سخت می گردد و دارای مقاومت بالایی می شود به طوریکه در زمانی حدود ٢٨ روز که در زیر آب باشد دارای مقاومتی حداقل ٢٥٠ کیلو گرم بر سانتی مترمربع می گردد.

 

بنا به مطالعات پدید آمده قدمت استفاده از سیمان در رم قدم بوده است به طوریکه مخلوطی از خرده سنگ و آهک پخته درست می کردند و از ترکیب این مخلوط با آب، بتن حاصل گردیده است و از بتن بدست آمده در مراحل اجرایی کارهای ساختمانی استفاده می شده است.

 

تاریخچه سیمان:

در اواخر قرن هیجدهم به منظور آشنایی با خواص هیدرولیکی ملاتهای ساختمانی گامهای موثری توسط مهندس انگلیسی جوانی به نام جان اسمیتون (John Smeaton) برداشته شد و در سال ١٧٦٩ میلادی مطالعاتی در زمینه خواص ترکیبی موجود در خاک رس، گیرش هیدرولیکی و خاصیت سخت شدن این ترکیبات به عمل آمد که در نتیجه مواد جدید حاصله، سیمان (Cement) نامگذاری گردید.

 

پس از نتایج بدست آمده در سال ١٨٠٢ میلادی اولین کارخانه سیمان در انگلیس بنا شد که به جهت سعی و تلاش یک شیمیدان معروف به نام فردریچ جان (friedrich John) با بالا بردن کیفیت پخت سیمان و همچنین ازدیاد درجه حرارت دمای کوره و خردایش بهتر مواد، سیمان مرغوبتری را بدست آورد. و اما ٢٣ سال بعد یعنی در سال ١٨٢٥ یک بنای جوان آجرچین بنام ژوزف آسپدین (Joseph Aspdin) موفق شد از پخت مخلوط سنگ آهک و خاک رس (به صورت دو غالب) در درجه حرارت بالا به نوعی آهک آبی بی نظیر دست پیدا کند و این شخص، این محصول را سیمان پرتلند نامید و اولین کارخانه سیمان پرتلند را بنا کرد و همچنین این روش را به نام خودش به ثبت رسانید. بنابراین اولین کارخانه سیمان در کشور انگلستان تاسیس گردید، خالی از لطف نیست که بدانیم اولین کارخانه سیمان آلمان در سال ١٨٥٥ توسط دکتر هرمان بلیب تره ( Dr. Hermann Bleibtrev ) در اشتاین اجرا گردیده است. و همچنین اولین کوره دوارسیمان در دنیا در سال ١٩٠٣ میلادی در کارخانه سیمان Adler شروع به کار کرد حال پس از تعریف مختصری از سیمان و تاریخچه آن به بررسی تقویم تاریخی بدست آمدن سیمان و بتن به نامهای غیر از اینها در ادوار گذشته قبل و بعد از میلاد مسیح می پردازیم تا بدانیم که انسان گذشته نیز به منظور استقامت بخشیدن به محل زندگی خود و همچنین سازه های جانبی دست ساز خودشان اهمیت ویژه ای قایل بوده است.

 

سیمان پرتلند نوع 1 ( سیمان پرتلند معمولی ) P. C - type I :

در مواردی به کار می رود که هیچ گونه خواص ویژه مانند سایر انواع سیمان مورد نظر نیست.

 

سیمان پرتلند نوع 2 ( P. C - type II ) :

برای استفاده عمومی و نیز استفاده ویژه در مواردی که گرمای هیدراتاسیون متوسط مورد نظراست.

 

سیمان پرتلند نوع 3 ( P. C - type III ):

برای استفاده در مواقعی که مقاومت های بالا در کوتاه مدت مورد نظر است.

 

سیمان پرتلند نوع 5 ( P. C - type V ) :

در مواقعی که مقاومت زیاد در مقابل سولفات ها مورد نظر باشد استفاده می شود.

 

سیمان سفید ( White Cement ) :

برای استفاده در سطح ساختمان ها و مواقعی که استفاده از سیمان های بدون رنگ با مقاومت های بالا مورد نیاز باشد. از این سیمان در تولید انواع سیمان های رنگی استفاده می شود.

 

سیمان سرباره ای ضد سولفات frown.gif SR. slag Cement ) :

در مواقعی که مقاومت متوسط در مقابل سولفات ها و یا حرارت هیدراتا سیون متوسط مورد نظراست، استفاده می گردد

 

سیمان پرتلند - پوزولانی ( P. P. Cement ) :

در ساختمان های بتنی معمولی و بیشتر در مواردی که مقاومت متوسط در مقابل سولفات ها و حرارت هیدراتاسیون متوسط مورد نظر باشد استفاده می شود.

 

سیمان پرتلند - آهکی ( P. K. Z. Cement ):

این نوع سیمان در تهیه ملات و بتن در کلیه مواردی که سیمان پرتلند نوع 1 به کار می رود قابل استفاده است. دوام بتن را در برابر یخ زدن، آب شدن و املاح یخ زا و عوامل شیمیایی بهبود می دهد.

 

سیمان بنایی ( Masonry Cement ) :

برای استفاده در مواقعی که ملات بنایی با مقاومت های کمتر از سیمان پرتلند نوع 1 مورد نیازاست.

 

سیمان نسوز 450 ( Rf Cement 450 ) :

حاوی بیش از 40% Al2O3 با اتصال هیدروکسیلی و فازهای کلسیم آلومینات، برای مصرف به عنوان ماده نسوز در صنایع حرارتی استفاده می شود.

 

سیمان نسوز 500 ( Rf Cement 500 ) :

حاوی بیش از 70% Al2O3 با اتصال هیدروکسیلی و فازهای CA2,CA برای مصرف به عنوان ماده نسوز با درصد خلوص بالا در صنایع حرارتی و آتمسفرهای CO. H2 به کار می رود.

 

سیمان نسوز 550 ( Rf Cement 550 ):

حاوی بیش از 80% Al2O3 با اتصال هیدروکسیلی و آلومینات کلسیم به عنوان ترکیب اصلی، دارای نسوزندگی و خواص ترمومکانیکی بالا و کاربردهای ویژه نسوز مانند آتمسفرهای احیاءهیدروژن.

 

سیمان های چاه نفت:

این سیمان ها برای درزگیری چاه های نفت به کار می روند. عمده این نوع سیمان ها دیرگیر بوده و در برابر دماها و فشارهای بالا مقاوم می باشند. این سیمان ممکن است در حفره چاه های آب و فاضلاب نیز به مصرف برسد.

 

سیمان های پرتلند ضد آب:

این سیمان به رنگ سفید، خاکستری تولید می شود. این نوع سیمان، انتقال مویینه آب را تحت فشار ناچیز یا بدون فشار، کاهش می دهد ولی جلوی انتقال بخار آب را نمی گیرد.

 

سیمان های با گیرش تنظیم شده:

سیمان با گیرش تنظیم شده به گونه ای کنترل و ساخته می شود که می تواند بتنی با زمان های گیرش از چند دقیقه تا یک ساعت تولید کند.

 

سیمان های رنگی:

این سیمان ها بیشتر جنبه تزئینی و آرایشی دارند و در نماسازی سیمانی و تولید بتن نمادار به مصرف می رسند.

لینک به دیدگاه

مطالعه دوام بتن در شرایط محیطی دریاچه ارومیه

 

 

 

 

1227396609.jpg

 

 

 

دریاچه ارومیه با کیفیت آب شور که غلظت آن بر حسب آورد رودخانه ها از سالی به سال دیگر بین 4 تا 8 برابر شوری دریاهای آزاد می باشد ، شرایط خورنده ای را برای مصالح سنگی و بتنی تامین می نماید .

اعتدال درجه حرارت منطقه و شوری بیش از حد سبب شده است تا از شدت خورندگی کاسته شود . ولی بهر حال پدیده تر و خشک شدن و انجماد و ذوب یخ در مصالح بتنی به ویژه بتن مسلح تاثیر گذار است .

یک مقاله 54 صفحه ای از دکتر حسین جلالی را در قالب یک فایل PDF از لینک زیر دریافت کنید . ( این مقاله را از سایت ایران سازه گرفته بودم )

 

 

 

لینک دانلود :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

فوق روان کننده بر اساس الزامات استاندارد ASTM-C494 Types A& F ساخته می شوند این مواد را بعنوان روانسازهای بتن و فوق روانسازهای بتن مصرف کنند و براساس استاندارد 2930 ایران ساخته می شوند.

گفتنی است این مواد ممکن است توسط تولید کنندگان بتن آماده و قطعات پیش ساخته بتنی برای تولید کار آمد و مقرون به صرفه زمانی که شکل پذیری زیاد بتن و افزایش مقاومت اولیه و نهایی مد نظر است ، مورداستفاده قرار گیرند .

باید اشاره کرد این محصولات در کاهش آب بسیار موثر بوده تا جایی که وقتی به عنوان یک کاهش آب دهنده شدید آب بتن مورد استفاده قرار می گیرند در مقادیر متعارف می تواند به سادگی بین 20%-18% کاهش در میزان آب مصرفی ایجاد نماید ودر مواردی در بتنهای خاص و با استفاده از مقادیر متعارف، کاهش آب تا حداکثر 40% نیز ممکن شده است .

همچنین خاصیت روان کنندگی زیاد این مواد سبب می شود بتنی با اسلامپ زیاد، روان و خود تراز شونده حاصل گردد . کارآیی این بتن نسبت به بتن معمولی بسیار شگرف و قابل تمایز است . بطوریکه بتن با حداقل عملیات و ویبره کردن یا حتی به خودی خود ، در حالیکه مصرف آب آن به حداقل رسیده در قالب جای می گیرد .

شایان ذکر است از ترکیب خواص فوق روان کنندگی و کاهش دهندگی شدید آب بتن مزایای زیر حاصل می گردد :

مقاومت اولیه زیاد امکان تسریع در عملیات بازکردن قالبها و باعث استفاده مقرون به صرفه تر از قالبهامی شود، مقاومت اولیه و نهایی زیاد برای بتن پر مقاومت و مقرون به صرفه، افزایش کار آیی باعث کاهش هزینه های استهلاک و سختی کار می گردد و افزایش اسلامپ ،امکان تولید بتنی خود تراز شونده رابوجودمی آورد، مقاومت نهایی بالاتر به مهندسین محاسب قدرت انعطاف بیشتری را در ارائه یک طرح بهینه اقتصادی ارائه می دهد .

خاصیت فوق العاده روان کنندگی باعث تسهیل در پمپ نمودن و کاهش نیاز به ویبره کردن بتن می گردد .

نسبت آب به سیمان کاهش یافته ، دوام و تراکم بیشتر بتن را با کاهش نفوذپذیری بتن باعث می شود.

منبع : سایت خبری ماراویا

لینک به دیدگاه

اثر میکروسیلیس بر روی زمان گیرش و جمع شدگی

 

در داخل قالب بتن های توانمند

 

 

 

این مقاله حاصل کارهای آزمایشگاهی انجام شده بر روی زمان گیرش و تغییر شکلهای اولیه بتن های با مقاومت بسیار زیاد و دارای درصدهای مختلف میکروسیلیس می باشد . از روش مقاومت در برابر نفوذ ( ASTM C–103 ) برای تعیین زمانهای گیرش اولیه و نهایی بتن استفاده شده است . در این روش ابتدا بتن ساخته می شود و سپس با استفاده از الک نمره چهار سنگدانه های درشت آن جدا می گردند . این آزمایش بدلیل آنکه بر روی ملات بدست آمده از بتن انجام می شود ، بهتر از روشهای عنوان شده در BS 4550 و ASTM C-191 و ASTM C-266 می باشد .

از نتایج این قسمت برای یافتن نقطه شروع جمع شدگی خود به خودی بتن ، که بیشترین مقدار جمع شدگی در بتن های با مقاومت بسیار زیاد را به خود اختصاص می دهد ، استفاده شده است .لازم به ذکر است که بتن ساعت ها قبل از باز شدن قالبها به نقطه آغاز فوق می رسد .

نتایج این تحقیقات نشان می دهد که با افزایش درصد میکروسیلیس زمان های گیرش اولیه و نهایی افزایش می یابند . این موضوع در مورد جمع شدگی در داخل قالب صادق نیست و در واقع حضور میکروسیلیس باعث کاهش آن میگردد .

توضیحات بیشتر را از لینک زیر در قالب یک فایل PDF هفت صفحه ای دریافت کنید .

نویسنده : دکتر علی اکبر رمضانیان پور .

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

تاریخچه و توضیحاتی مختصر (1)

 

مقدمه :

توليد سيمان كه ماده اصلي چسبندگي در بتن است در سال 1756 ميلادي در كشور انگلستان توسط «John smeaton » كه مسئوليت ساخت پايه برج دريايي «Eddystone » را بر عهده داشت آغاز شد و درنهايت سيمان پرتلند در سال 1824 ميلادي در جزيره اي به همين نام در انگلستان توسط «Joseph Aspdin » به ثبت رسيد . مردم كشور ما نيز از سال 1312 با احداث كارخانه سيمان ري با مصرف سيمان آشنا شدند و با پيشرفت صنايع كشور ، امروزه در حدود 26 الي 30 ميليون تن سيمان در سال توليد مي گردد . با آگاهي مهندسان از نحوه استفاده سيمان در كارهاي عمراني ، اين ماده جايگاه خودش را در كشورمان پيدا كرد .

يكي از روشهاي ساختمان سازي كه امروزه در جهان به سرعت توسعه مي يابد ساختمانهاي بتني است . بعد از انقلاب اسلامي به علت كمبود تير آهن در نتيجه تحريمها و نيز گسترش ساخت و سازهاي عمراني در كشور ، كاربرد بتن بسيار رشد نمود . علاوه بر اين موضوع ساختمانهاي بتني نسبت به ساختمانهاي فولادي داراي مزايايي از قبيل مقاومت بيشتر در مقابل آتش سوزي و عوامل جوي ( خورندگي ) آسان بودن امكان تهيه بتن به علت فراواني مواد متشكله بتون و عايق بودن در مقابل حرارت و صوت مي باشند كه توسعه روز افزون اين نوع ساختمانها را فراهم مي سازد .

يكي از معايب مهم ساختمانهاي بتني وزن بسيار زياد ساختمان مي باشد كه با ميزان تخريب ساختمان در اثر زلزله نسبت مستقيم دارد . اگر بتوانيم تيغه هاي جدا كننده و پانل ها را از بتن سبك بسازيم وزن ساختمان و در نتيجه آن تخريب ساختمان توسط زلزله مقدار زيادي كاهش مي يابد . ولي كم بودن مقاومت بتن سبك عامل مهمي در محدود نمودن دامنه كاربرد اين نوع بتن و بهره گيري از امتيازات آن بوده است . استفاده از ميكروسيليس در ساخت بتن سبك سبب شده است كه مقاومت بتن سبك بالا رود و اين محدوديت كاهش يابد . در اين تحقيق ضمن توضيحاتي در مورد بتن و تاثير آب بر روي مقاومت بتن ، بيشتر در باره بتن سبك و روشهاي افزايش مقاومت آن با استفاده از ميكروسيلس ، خواص مكانيكي و همچنين موارد كاربرد آن بحث مي شود .

 

1- سيمان

- سيمان توليد شده در كشور ما با سيمان توليد شده در كشورهاي صنعتي متفاوت است كه لازم است تفاوت آن تا حد ممكن بررسي شود .

- طبقه بندي سيمانها شناسايي شود .

- عدم تنوع در كيفيت سيمان نشانه ضعفهايي از سيستم ساخت و ساز مي باشد .

- عدم استفاده از سيمان با كيفيت بالا از عوامل اوليه عمر كوتاه ساختمان در بحث مصالح مي باشد .

 

2 – شن و ماسه

- معيارها و آئين نامه هاي توليد كلان شن و ماسه بررسي شود .

- توليد كلان شن و ماسه در كشور ما از نظر معيار و رعايت آئين نامه هاي توليد بررسي شود .

- معايب شن و ماسه توليدي در كشور در حد كلان بدلائل زير آنرا در درجه دوم و يا سوم كيفيت قرار مي دهد .

 

الف : وجود گرد و غبار

ب : عدم شستشو

ج : دانه بندي نا صحيح

د : استفاده از شن و ماسه رودخانه اي بجاي شن و ماسه شكسته .

 

- استفاده از شن و ماسه درجه 2 و يا 3 از عوامل ثانوي عمر كوتاه ساختمان در بحث مصالح مي باشد .

افزايش مقاومت بتن مد نظر تمام دست اندركاران صنعت توليد بتن مي باشد .

 

ساختار بتن :

- بتن داراي چهار ركن اصلي مي باشد كه به صورت مناسبي مخلوط شده اند ، اين چهار ركن عبارتند از :

الف : شن

ب : ماسه

ج : سيمان

د : آب

- در برخي شرايط براي رسيدن به هدفي خاص مواد مضاف به آن اضافه مي شود كه جزﺀ اركان اصلي بتن به شمار نمي آيد .

- توده اصلي بتن مصالح سنگي درشت و ريز ( شن و ماسه ) مي باشد .

- فعل و انفعال شيميايي بين سيمان و آب موجب مي شود شيرابه اي بوجود آيد و اطراف مصالح سنگي را بپوشاند و مصالح سنگي را بصورت يكپارچه بهم بچسباند .

- استفاده از آب براي ايجاد واكنش شيميايي است .

- براي ايجاد كار پذيري لازم بتن مقداري آب اضافي استفاده مي شود تا بتن با پر كردن كامل زواياي قالب بتواند دور كليه ميلگرد هاي مسلح كننده را بگيرد .

- جايگاه استفاده آب در بتن به لحاظ انجام عمل هيدراتاسيون داراي حساسيت بسيار زيادي است .

 

ويژگيهاي آب مصرفي بتن :

- آب هاي مناسب براي ساختن بتن

1- آب باران

2- آب چاه

3- آب بركه

4- آب رودخانه در صورتي كه به پسابهاي شيميايي كارخانجات آلوده نباشد و غيره …

بطور كلي آبي كه براي نوشيدن مناسب باشد براي بتن نيز مناسب است باستثناﺀ مواردي كه متعاقبا توضيح داده خواهد شد .

 

- آبهاي نا مناسب براي ساختن بتن

1- آبهاي داراي كلر ( موجب زنگ زدگي آرماتور مي شود )

2- آبهايي كه بيش از حد به روغن و چربي آلوده مي باشند .

3- وجود باقيمانده نباتات در آب .

4- آب گل آلود ( موجب پايين آوردن مقاومت بتن مي شود )

5- آب باتلاقها و مردابها

6- آبهاي داراي رنگ تيره و بدبو

7- آبهاي گازدار مانند2 co و…

8- آبهاي داراي گچ و سولفات و يا كلريد موجب اثر گذاري نا مطلوب روي بتن مي شوند .

 

نكته : 1- آبي كه مثلا شكر در آن حل شده است براي نوشيدن مناسب است ولي براي ساخت بتن مناسب نيست .

نكته : 2- مزه بو و يا منبع تهيه آب نبايد به تنهايي دليل رد استفاده از آب باشد .

نكته : 3- ناخالصيهاي موجود در آب چنانچه از حد معين بيشتر گردد ممكن است بشدت روي زمان گرفتن بتن ، مقاومت بتن ، پايداري حجمي آن ، اثر بگذارد و موجب زنگ زدگي فولاد شود .

نكته : 4- استفاده از آب مغناطيسي بعنوان يكي از چهار ركن اصلي مخلوط بتن مي تواند بعنوان تاثيرگذار بر روي يارامترهاي مقاومت بتن انتخاب گردد .

لینک به دیدگاه

تاریخچه و توضیحاتی مختصر (2)

 

تمايز بتن از نظر چگالي :

الف : بتن معمولي : چگالي بتن معمولي در دامنه باريك 2200 تا 2600 kg/m3 قرار دارد زيرا اكثر سنگها در وزن مخصوص تفاوت اندكي دارند ( ادامه اين مبحث از بحث ما خارج است )

 

ب : بتن سنگين : از اين بتنها در ساختمان محافظهاي بيولوژيكي بيشتر استفاده مي شود مانند ساختار ، آكتورهاي هسته اي و پناهگاههاي ضد هسته اي كه مورد بحث ما نمي باشد كه چگالي آن معمولا بيشتر از 2200 تا 2600 كيلوگرم بر متر مكعب مي باشد .

 

ج : بتن سبك : مصرف بتن سبك اصولا تابعي از ملاحظات اقتصادي است ضمن اينكه استفاده از اين بتن بعنوان مصالح ساختماني داراي اهميت بسيار زيادي است اين بتن داراي چگالي كمتر از 2200 تا 2600 كيلوگرم در متر مكعب مي باشد . بدليل اينكه داراي چگالي كمتر از بتن سنگين است داراي امتياز قابل توجهي از نظر ايجاد بار وارده بر سازه مي باشد چگالي بتن سبك تقريبا بين 300 و 1850 كيلوگرم بر متر مكعب مي باشد يكي از امتيازات مهم امكان استفاده از مقاطع كوچكتر و كاهش مربوطه در اندازه پي ها مي باشد ضمن اينكه قالبها فشار كمتري را از حالت بتن معمولي تحمل مي كنند و همچنين در كاهش جابجايي كل وزن مصالح بدليل افزايش توليد جايگاه ويژه اي دارد .

 

روش هاي كلي توليد بتن سبك :

- روش اول : از مصالح متخلخل سبك با وزن مخصوص ظاهري كم بجاي سنگدانه معمولي كه تقريبا داراي چگالي 6/2 مي باشد استفاده مي كنند .

 

- روش دوم : بتن سبك توليد شده در اين روش بر اساس ايجاد منافذ متعدد در داخل بتن يا ملات مي باشد كه اين منافذ بايد به وضوح از منافذ بسيار ريز بتن با حباب هوا متمايز باشد كه بنام بتن اسفنجي ، بتن منفذ دار و يا بتن گازي يا بتن هوادار مي شناسند .

 

- روش سوم : در اين روش توليد ، سنگدانه ها ي ريز از مخلوط بتن حذف مي شوند . بطوريكه منافذ متعددي بين ذرات بوجود مي آيد و عموما از سنگدانه هاي درشت با وزن معمولي استفاده مي شود . اين نوع بتن را بتن بدون سنگدانه ريز مي نامند .

نكته : كاهش در وزن مخصوص در هر حالت به واسطه و جود منافذ يا در مصالح يا در ملات و يا در فضاي بين ذرات درشت موجب كاهش مقاومت بتن مي شود .

 

طبقه بندي بتن هاي سبك بر حسب نوع كاربرد آنها :

- بتن سبك بار بر ساختمان

- بتن مصرفي در ديوارهاي غير بار بر

- بتن عايق حرارتي

 

نكته 1- طبقه بندي بتن سبك بار بر طبق حداقل مقاومت فشاري انجام مي گيرد .

مثال : طبق استاندارد 77 – 330 ASTM C در بتن سبك ---- مقاومت فشاري بر مبناي نمونه هاي استوانه اي استاندارد از شده پس از 28 روز نبايد كمتر از Mpa 17 باشد . و وزن مخصوص آن نبايد از 1850 كيلوگرم بر متر مكعب تجاوز نمايد كه معمولا بين 1400 او 1800 كيلوگرم بر متر مكعب است .

 

نكته : 2- بتن مخصوص عايق كاري معمولا داراي وزن مخصوص كمتر از 800 كيلوگرم بر متر مكعب و مقاومت بين 7/0 و Mpa 7 مي باشد .

انواع سبك دانه هايي كه به عنوان مصالح در ساختار بتن سبك استفاده مي شود :

الف - سبك دانه هاي طبيعي : مانند دياتومه ها ، سنگ پا ، پوكه سنگ ، خاكستر ، توف كه بجز دياتومه ها بقيه آنها منشاﺀ آتشفشاني دارند .

 

نكته :1- اين نوع سبك دانه ها معمولا بدليل اينكه فقط در بعضي از جاها يافت مي شوند به ميزان زياد مصرف نمي شوند ، معمولا از ايتاليا و آلمان اينگونه مصالح صادر مي شود .

 

نكته : 2- از انواعي پوكه معدني سنگي كه ساختمان داخلي آن ضعيف نباشد بتن رضايت بخشي با وزن مخصوص 700 تا 1400 كيلو گرم بر متر مكعب توليد مي شود كه خاصيت عايق بودن آن خوب مي باشد اما جذب آب و جمع شدگي آن زياد است . سنگ پا نيز داراي خاصيت مشابه است .

 

ب - سبك دانه هاي مصنوعي : اين سبك دانه ها به چهار گروه تقسيم مي شوند .

- گروه اول : كه با حرارت دادن و منبسط شدن خاك رس ، سنگ رسي ، سنگ لوح ، سنگ رسي دياتومه اي ، پرليت ، اسيدين، ورميكوليت بدست مي آيند .

- گروه دوم : از سرد نمودن و منبسط شدن دوباره كوره آهن گدازي به طريقي مخصوص بدست مي آيد .

- گروه سوم : جوشهاي صنعتي ( سبكدانه هاي كلينكري) مي باشند .

- گروه چهارم : مخلوطي از خاك رس با زباله خانگي و لجن فاضلاب پردازش شده را مي توان به صورت گندوله در آورد تا با پختن در كوره تبديل به سبك دانه شود ولي اين روش هنوز به صورت توليد منظم در نيامده است .

 

الزامات سبكدانه ها بتن سازه اي :

الزامات سبكدانه ها در آيين نامه هاي ASTM C330-89 ( مشخصات سبكدانه ها براي بتن سازه اي در آمريكا ) و BS 3797:1990 ( مشخصات سبكدانه ها براي قطعات بنايي و بتن سازه اي در بريتانيا ) داده شده اند . در استاندارد بريتانيايي مشخصات واحدهاي بنايي نيز مورد بحث قرار گرفته است . اين آيين نامه ها محدوديتهايي براي افت حرارتي ( 5% درASTM و4% در BS)و همچنين در BS براي مقدار سولفات 1% 3 so (به صورت جرمي ) را مشخص نموده اند . برخي الزامات دانه بندي اين آيين نامه ها در جداول 2 ، 3 و 4 نشان داده شده اند .

ذكر اين نكات براي فهم بهتر اين جداول مفيد است :

 

1- آيين نامه BS 1047:7983 مشخصات دوباره در هواي سرد شده ، كه منبسط نشده است را در بر مي گيرد .

2- سبكدانه هاي به كار رفته در بتن سازه اي ، صرفنظر از منشأ آنها توليداتي مصنوعي مي باشند و در نتيجه معمولا يكنواخت تر از سبكدانه طبيعي مي باشند . بنابراين سبكدانه را مي توان براي توليد بتن سازه اي با كيفيت ثابت مورد استفاده قرار داد .

 

نكته : سبكدانه ها داراي خصوصيت ويژه اي هستند كه سنگدانه هاي معمولي فاقد آن مي باشند و در رابطه با انتخاب نسبتهاي مخلوط و خواص مربوط به بتن حاصل داراي اهميت ويژه اي مي باشند .اين ويژگي عبارتست از توانايي سبكدانه ها در جذب مقادير زياد آب و همچنين امكان نفوذ مقداري از خمير تازه سيمان به درون منافذ باز ( سطحي ) ذرات سبكدانه (مخصوصا ذرات درشت تر ) در نتيجه اين جذب آب توسط سبكدانه ، وزن مخصوص آنها زيادتر از وزن مخصوص ذراتي مي شود كه در گرمچال خشك شده اند .

روشهاي افزايش مقاومت بتن سبك :

كم بودن مقاومت بتن سبك عامل مهمي در محدود نمودن دامنه كاربرد اين نوع بتن و بهره گيري از امتيازات آن بوده است براي بدست آوردن بتن سبك با مقاومت زياد روشهاي زيادي مورد توجه قرار گرفته است .

 

نكته : عامل موثر و مشترك در كليه اين پژوهشها مصرف ميكروسيليس در بتن مي باشد . در اينجا اجمالا بهیک روش اشاره مي گردد :

تحقيقات مشترك V.Novokshchenov و W.Whitcomb جهت افزايش مقاومت بتن سبك و بهبود ديگر خواص آن با استفاده از سبكدانه هاي سيليسي منبسط شده ، به اعتقاد آنان مقاومت بتن سبك تابعي از مقاومت سبكدانه ها و ملات است كه اين رابطه به صورت ذيل ارائه گرديد .

fc = fm (vm)+fa (1-vm)

fc = مقاومت بتن fa = مقاومت سبكدانه

fm = مقاومت ملات vm = حجم نسبي ملات

بدين ترتيب مشاهده مي شود كه مي توان با افزايش مقاومت سبكدانه و مقاومت و حجم ملات مقاومت بتن سبك را افزايش داد .

لینک به دیدگاه

سیمان منبسط شونده بتن تولید شده از آن

 

 

در پاره ای از موارد لازم است سیمانی تهیه شود که حجم آن در جمع شدگی ناشی از خشک شدن ، تغییر نکند و در نتیجه از ترک خوردگی جلوگیری شود. حتی در پاره ای از موارد به هنگام سخت شدن کمی نیز منبسط شود. بتن هایی که با این نوع سیمان ساخته شوند ، در روزهای اولیه انبساط یافته و در صورت مهار این انبساط با آرماتورها ، بتن به صورت پیش تنیده در می آید. در این حالت فولاد در کشش و بتن تحت فشار پیش تنیدگی قرار می گیرد. البته استفاده از سیمان های منبسط شونده نمی تواند جلوی جمع شدگی را کاملا" بگیرد . و بتنی با حجم ثابت بسازد ، زیرا بلافاصله بعد از خاتمه نگهداری بتن در محیط مرطوب ، جمع شدگی و افت آن آغاز می شود . بنابراین معمولا" سعی می شود که میزان این سیمان طوری تنظیم شود که انبساط و متعاقب آن جمع شدن بتن به یک اندازه و در جهت خلاف یکدیگر باشند .

تمامی انواع سیمانهای منبسط شونده بعد از هیدراتاسیون تولید سولفو آلومینات کلسیم هیدراته شده ( اترینگایت ) می کنند که عامل انبساط خمیر است . سیمان نوع M با آسیاب و مخلوط کردن کلینکر سیمان پرتلند ، کلینکر سیمان پرآلومین و سنگ گچ ساخته می شود . این سیمان طی 2 تا 3 روز بعد از ساختن بتن منبسط می شود . این سیمان که بنام سیمان منبسط شونده پر انرژی نیز معروف است ، زود گرفته و زود سخت می شود ( 7 Mpa در مدت 6 ساعت و 50 Mpa در مدت 28 روز ) . همچنین این سیمان در مقابل سولفاتها بسیار مقاوم است .

استاندارد ASTM C 845-80 همچنین سیمان نوع K را بنام سیمان منبسط شونده معرفی می کند . مواد اصلی سنگ گچ و بوکسیت و گچ می باشند که بعد از پخته شدن ترکیبات سولفات کلسیم و آلومینات کلسیم ( C5 A3 ) با خاصیت انبساط پذیری تولید می کنند . هنگامی که این سیمان با آب ترکیب می شود ، با اضافه کردن یک ماده تثبیت کننده ( معمولا" سرباره آهنگدازی ) با جذب سولفات کلسیم اضافی توسط سرباره ، انبساط ملات کنترل می گردد . با کنترل دقیق نسبت مواد مخلوط شونده ، سولفو آلومینات کلسیم غیر هیدراته ( C4 A3 . SO3 ) تشکیل می شود . در این نوع سیمان روند افزایش انبساط تحت کنترل قرار می گیرد . نوع S سیمان نیز که توسط استاندارد ASTM C 845-80 مشخص شده است ، دارای مقدار بیشتری C3A و نیز سولفات کلسیم ، نسبت به سیمان پرتلند معمولی می باشد . امروزه دو نوع بتن بنام بتنهای ساخته شده از سیمان منبسط شونده ، شناخته شده است . نوع اول بتنی است که جمع شدگی آن با انبساط جبران می شود . نوع دوم بنام بتن خود تنیده دارای تنشهای قبل از بارگذاری می باشد . البته خیلی از خواص این بتنها با خواص بتنهای ساخته شده از سیمان پرتلند یکسان است . لیکن افت اسلامپ آن سریعتر و همچنین در بعضی از انواع آن نظیر S و M خاصیت ضد سولفاتی نیز ضعیفتر است .

این سیمانهای منبسط شونده در شرایط خاص برای منظورهای خاص ، نظیر جلوگیری نشت آب ، کاربرد دارند .

 

 

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

تاب فشاری بتن ها در آب دریاچه ارومیه با بود و نبود پوشش رنگی

 

 

می دانیم که آب دریاچه ارومیه نسبت به آب دیگر دریاها و اقیانوسها از دیدگاه شیمیایی علاوه بر چگالی بالای نمکها ، دارای یونهای فعال گوناگون است . از این رو در درازای زمان برای بودن بتن ها در درون آن ، زیان آور و خورنده شناخته شده است . هدف این پژوهش ( مقاله ی حاضر ) بررسی تاب فشاری انواع بتن های با پوشش رنگی و بدون پوشش رنگی ، و مقایسه نتایج با مقاومت بتن های نگهداری شده در آب شهری بوده است . برای دستیابی به هدفهای خواسته شده ، در مجموع 42 آزمونه بتنی مکعبی به ابعای 15*15*15 سانتیمتر در شش دسته هفت تایی ساخته شدند . سه دسته از آنها با نشان Aa ، Ab و Ac و با سیمان به عیار 300 و سه دسته دیگر با نشان Ba ، Bb و Bc و با عیار 350 کیلوگرم در متر مکعب عمل آوری شدند . برای دسته های "A" مقدار آب مصرفی برای اولی 175 با نسبت آب به سیمان 0.583 ، و برای دو گروه دیگر برابر 169 کیلوگرم ، با نسبت آب به سیمان 0.564 می باشد . برای دسته های "B" نیز مقدار آب به ترتیب 176 ، 183 و 190 کیلوگرم در متر مکعب بود که نسبت آب به سیمان به ترتیب 0.503 ، 0.523 و 0.543 بدست آمد . سایر جزئیات از قبیل مدت زمان و شرایط عمل آوری ، مقاومتها و ... را از فایل پیوستی بخوانید .

نویسنده : محسن گویا ( دانشیار گروه راه و ساختمان دانشگاه تبریز )

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

علل مختلفي كه باعث فرسودگي و تخريب سازه هاي بتني مي شوند - علائم هشدار دهنده كه كار مرمت را الزامي مي دارند.

 

 

1- علل فرسودگي و تخريب سازه هاي بتني

 

 

(causes of deteriorations)

 

 

علل مختلفي كه باعث فرسودگي و تخريب سازه هاي بتني مي شود همراه با علائم هشدار دهنده ديگري كه كار تعميرات را الزامي مي دارند، در نخستين بخش از كتاب مورد بررسي و تحليل قرار مي گيرند:

 

 

1-1- نفوذ نمكها

 

 

(ingress of salts)

 

 

نمكهاي ته نشين شده كه حاصل تبخير و يا جريان آبهاي داراي املاح مي باشند و همچنين نمكهایی كه توسط باد در خلل و فرج و تركها جمع مي شوند، هنگام كريستاليزه شدن مي توانند فشار مخربي به سازه ها وارد كنند كه اين عمل علاوه بر تسريع و تشديد زنگ زدگي و خوردگي آرماتورها به واسطه وجود نمكهاست. تر وخشك شدن متناوب نيز مي تواند تمركز نمكها را شدت بخشد زيرا آب داراي املاح، پس از تبخير، املاح خود را به جا مي گذارد.

 

 

1-2- اشتباهات طراحي

 

 

(specification errors)

 

 

به كارگيري استانداردهاي نامناسب و مشخصات فني غلط در رابطه با انتخاب مواد، روشهاي اجرايي و عملكرد خود سازه، مي تواند به خرابي بتن منجر شود. به عنوان مثال استفاده از استانداردهاي اروپايي و آمريكايي جهت اجراي پروژه هايي در مناطق خليج فارس، جايي كه آب و هوا و مواد و مصالح ساختماني و مهارت افراد متفاوت با همه اين عوامل در شمال اروپا و آمريكاست، باعث مي شود تا دوام و پايايي سازه هاي بتني در مناطق ياد شده كاهش يافته و در بهره برداري از سازه نيز با مسائل بسيار جدي مواجه گرديم.

 

 

1-3- اشتباهات اجرایی

 

 

(con struction errors)

 

 

كم كاريها، اشتباهات و نقصهایی كه به هنگام اجراي پروژه ها رخ مي دهد، ممكن است باعث گردد تا آسيبهايي چون پديدهء لانه زنبوري، حفره هاي آب انداختگي، جداشدگي، تركهاي جمع شدگي، فضاهاي خالي اضافي يا بتن آلوده شده، به وجود آيد كه همگي آنها به مشكلات جدي مي انجامند.

 

 

اين گونه نقصها و اشكالات را مي توان زاييدهء كارآئي، درجهء فشردگي، سيستم عمل آوري، آب مخلوط آلوده، سنگدانه هاي آلوده و استفاده غلط از افزودنيها به صورت فردي و يا گروهي دانست.

 

 

1-4- حملات كلريدي

 

 

(chloride attack)

 

 

وجود كلريد آزاد در بتن مي تواند به لايهء حفاظتي غير فعالي كه در اطراف آرماتورها قرار دارد، آسيب وارد نموده و آن را از بين ببرد.

 

 

خوردگي كلريدي آرماتورهايي كه درون بتن قرار دارند، يك عمل الكتروشيميايي است كه بنا به خاصيتش، جهت انجام اين فرآيند، غلظت مورد نياز يون كلريد، نواحي آندي و كاتدي، وجود الكتروليت و رسيدن اكسيژن به مناطق كاتدي در سل (cell)خوردگي را فراهم مي كند.

 

 

گفته مي شود كه خوردگي كلريدي وقتي حاصل مي شود كه مقدار كلريد موجود در بتن بيش از 6/0 كيلوگرم در هر متر مكعب بتن باشد. ولي اين مقدار به كيفيت بتن نيز بستگي دارد.

 

 

خوردگي آبله رویی حاصل از كلريد مي تواند موضعي و عميق باشد كه اين عمل در صورت وجود يك سطح بسيار كوچك آندي و يك سطح بسيار وسيع كاتدي به وقوع مي پيوندد كه خوردگي آن نيز با شدت بسيار صورت مي گيرد. از جمله مشخصات (features ) خوردگي كلريدي، مي توان موارد زير را نام برد:

 

 

(الف) هنگامي كه كلريد در مراحل مياني تركيبات (عمل و عكس العمل) شيميايي مورد استفاده قرار گرفته ولي در انتها كلريد مصرف نشده باشد.

 

 

(ب) هنگامي كه تشكيل همزمان اسيد هيدروكلريك، درجه ph مناطق خورده شده را پايين بياورد. وجود كلريدها هم مي تواند به علت استفاده از افزودنيهاي كلريد باشد و هم مي تواند ناشي از نفوذيابي كلريد از هواي اطراف باشد.

 

 

فرض بر اين است كه مقدار نفوذ يونهاي كلريدي تابعيت از قانون نفوذ fick دارد. ولي علاوه بر انتشار (diffusion) به نفوذ (penetration) كلريد احتمال دارد به خاطر مكش موئينه (capillary suction) نيز انجام پذيرد.

 

 

1-5- حملات سولفاتي

 

 

(sulphate attack)

 

 

محلول نمكهاي سولفاتي از قبيل سولفاتهاي سديم و منيزيم به دو طريق مي توانند بتن را مورد حمله و تخريب قرار دهند. در طريق اول يون سولفات ممكن است آلومينات سيمان را مورد حمله قرار داده و ضمن تركيب، نمكهاي دوتايي از قبيل:thaumasite و ettringiteتوليد نمايد كه در آب محلول مي باشند. وجود اين گونه نمكها در حضور هيدروكسيد كلسيم، طبيعت كلوئيدي(colloidal) داشته كه مي تواند منبسط شده و با ازدياد حجم، تخريب بتن را باعث گردد. طريق دومي كه محلولهاي سولفاتي قادر به آسيب رساني به بتن هستند عبارتست از: تبديل هيدروكسيد كلسيم به نمكهاي محلول در آب مانند گچ (gypsum) و ميرابليت mirabilite كه باعث تجزيه و نرم شدن سطوح بتن مي شود و عمل leaching يا خلل و فرج دار شدن بتن به واسطه يك مايع حلال، به وقوع مي پيوند.

 

 

1-6- حريق

 

 

(fire)

 

 

سه عامل اصلي وجود دارد كه مي توانند مقاومت بتن را در مقابل حرارت بالا تعيين كنند. اين عوامل عبارتند از:

 

 

(الف) توانايي بتن در مقابله با گرما و همچنين عمل آب بندي، بدون اينكه ترك، ريختگي و نزول مقاومت حاصل گردد.

 

 

(ب) رسانايي بتن (conductivity)

 

 

(ج) ظرفيت گرمايي بتن(heat capacity)

 

 

بايد توجه داشت دو مكانيزم كاملاً متضاد انبساط (expansion) و جمع شدگي مسؤول خرابي بتن در مقابل حرارت مي باشند. در حالي كه سيمان خالص به محض قرار گرفتن در مجاورت حرارتهاي بالا، انبساط حجم پيدا مي كند، بتن در همين شرايط يعني در معرض حرارتهاي (دماي) بالا، تمايل به جمع شدگي و انقباض نشان مي دهد. چون حرارت باعث از دست دادن آب بتن مي گردد، نهايتاً اينكه مقدار انقباض در نتيجه عمل خشك شدن از مقدار انبساط فراتر رفته و باعث مي شود جمع شدگي حاصل شود و به دنبال آن ترك خوردگي و ريختگي بتن به وجود مي آيد .به علاوه در درجه حرارت 400 درجه سانتي گراد، هيدروكسيد كلسيم آزاد بتن كه در سيمان پر تلند هيدراته شده موجود است، آب خود را از دست داده و تشكيل اكسيد كلسيم مي دهد. سپس خنك شدن مجدد و در معرض رطوبت قرار گرفتن باعث مي شود، تا از نو عمل هيدراته شدن حاصل شود كه اين عمل به علت انبساط حجمي موجب بروز تنشهاي مخرب مي گردد. هچنين انبساط و انقباض نا هماهنگ و متمايز (differential expansion and contraction)مواد تشكيل دهنده بتن مسلح مانند آرماتور، شن، ماسه و ... مي توانند در ازدياد تنشهاي تخريبي نقش موثري داشته باشند.

 

 

1-7- عمل يخ زدگي

 

 

(frost action)

 

 

براي بتنهاي خيس، عمل يخ زدگي يك عامل تخريب مي باشد، چون آب به هنگام يخ زدن ازدياد حجم پيدا كرده و باعث توليد تنشهاي مخرب دروني شده و لذا بتن ترك مي خورد. تركها و درزهایي كه نتيجه يخ زدگي و ذوب متناوب مي باشند، باعث مي گردند سطح بتن به صورت پولكي درآمده و بر اثر فرسايش، خرابي عمق بيشتري يابد بنابراين عمل يخ ز دگي بتن و ميزان تخريب حاصله، بستگي به درجه تخلخل و نفوذپذيري بتن دارد كه اين موضوع علاوه بر تاثير تركها و درزهاست.

 

 

1-8- نمكهاي ذوب يخ

 

 

(de-icing salts)

 

 

اگر براي ذوب نمودن يخ بتن، از نمكهاي ذوب يخ استفاده شود، علاوه بر خرابيهاي حاصله از يخ زدگي، ممكن است همين نمكها نيز باعث خرابي سطحي بتن گردند. چون باور آن است كه خرابيهاي حاصل از نمكهاي ذوب يخ، در نتيجه يك عمل فيزيكي به وقوع مي پيوندد، غلظت نمكها، موجود بودن آبي كه قابليت يخ زدگي داشته باشد و در كل فشارهاي هيدروليكي و غشايي (osmotic) نقش بسيار مهمي در دامنه و وسعت خرابيها ايفا مي كنند.

 

 

1-9- عكس العمل قليايي سنگدانه ها

 

 

(alkali-aggregate reaction)

 

 

در اين قسمت مي توان از واكنشهاي "قليايي- سيليكا" و "قليايي- كربناتها" نام برد.

 

 

عكس العمل قليايي – سيليكا(alkali-silica) عبارتست از: ژلي كه از عكس العمل بين هيدروكسيد پتاسيم و سيليكاي واكنش پذير موجود در سنگدانه حاصل مي شود. بر اثر جذب آب، اين ژل انبساط پيدا كرده و با ايجاد تنشهايي منجر به تشكيل تركهاي دروني در بتن مي شود. واكنش قليايي –كربنات، بين قلياهاي موجود در سيمان و گروه مشخصي از سنگهاي آهكي (dolomitic) كه در شرايط مرطوب قرار مي گيرند، به وقوع مي پيوندد. در اينجا نيز انبساط حاصله باعث مي شود تا تركهایی ايجاد شود يا در مقاطع باريك خميدگيهايي به وجود آيد.

 

 

1-10- كربناسيون

 

 

(carbonation)

 

 

گاه لايه حفاظتي كه در مجاورت آرماتور داخل بتن موجود است، در صورت كاهش ph بتن اطراف، به كلي آسيب ديده و از بين مي رود. بنابراين نفوذ دي اكسيد كربن از هوا، عكس العملي را با بتن آلكالين ايجاد مي نمايد كه حاصل آن كربنات خواهد بود و در نتيجه درجه ph بتن كاهش مي يابد. همچنان كه اين عمل از سطح بتن شروع شده و به داخل بتن پيشروي مي نمايد؛ آرماتور بتن تحت تأثير اين عمل دچار خوردگي مي گردد. علاوه بر خوردگي، دي اكسيد كربن و بعضي اسيدهاي موجود در آب دريا مي توانند هيدروكسيد كلسيم را در خود حل كرده و باعث فرسايش سطح بتن گردند.

 

 

1-11- علل ديگر

 

 

(other causes)

 

 

علل بسيار ديگري نيز باعث آسيب ديدگي و خرابي بتن مي شوند كه در سالهاي اخير شناساییشده اند. بعضي از اين عوامل داراي مشخصات خاصي بوده و كاربرد بسيار موضعي دارند. مانند تأثير مخرب چربيها بر كف بتن كشتارگاهها، مواد اوليه در كارخانه ها و كارگاههاي توليدي، آسيب حاصله از عوارض مخرب فاضلابها و مورد استفاده قرار دادن سازه هايي كه براي منظورها و مقاصد ديگري ساخته شده باشند، نه آنچه كه مورد بهره برداري است. مانند تبديل ساختمان معمولي به سردخانه، محل شستشو، انباري، آشپزخانه، كتابخانه و غيره. با اين همه اكثر آنها را مي توان در گروههاي ذيل طبقه بندي نمود:

 

 

(الف) ضربات و بارههاي وارده (ناگهاني و غيره) در صورتي كه موقع طراحي سازه براي اين گونه بارگذاريها پيش بينيهاي لازم صورت نگرفته باشد.

 

 

(ب) اثرات جوي و محيطي

 

 

(پ) اثرات نامطلوب مواد شيميایی مخرب

لینک به دیدگاه

بررسی کیفیت دوده سیلیسی تولید داخل کشور و تعیین میزان تاثیر آن روی خواص بتن تازه و سخت شده

 

در این مقاله نتایج بررسی آزمایشگاهی انجام شده برای تعیین خواص فیزیکی و شیمیایی و عملکرد پوزولانی دوده سیلیسی ( میکروسیلیس ) تولید داخل کشور ارائه ، و کیفیت آن با استانداردهای جهانی مقایسه شده است . همچنین تاثیر استفاده از مقادیر مختلف دوده سیلیسی بر روی خواص بتن تازه و بتن سخت شده در سنین مختلف ، و برای بتن های با مقادیر مختلف مواد سیمانی از 300 تا 450 کیلوگرم بر متر مکعب بررسی و تعیین شده است .

نتایج حاصل نشانگر این است که نمونه های دوده سیلیسی تولید داخل کشور با معیارهای فنی استاندارد ASTM C 120 که الزامات دوده سیلیسی جهت کاربرد در ملات و بتن را تعیین می کند ، مطابقت دارد . کاربرد دوده سیلیسی در تمامی بتن های مورد آزمایش با مقادیر مختلف مواد سیمانی موجب افزایش قابل توجه میزان آب مخلوط لازم جهت کسب روانی مورد نظر گردید . میزان افزایش آب ، حدود 0.8 لیتر به ازای هر کیلوگرم دوده سیلیسی مورد استفاده در مخلوط تعیین شد .

همچنین نتایج نشانگر تاثیر بسیار قابل توجه دوده سیلیسی در افزایش مقاومت بتن می باشد . بیشترین فعالیت پوزولانی بین سن 7 تا 28 روز مشاهده شد . میزان افزایش مقاومت 28 روزه نسبت به بتن کنترل از 30 تا 70 درصد متغیر بود که مقادیر زیادتر افزایش ، مربوط به بتن های با نسبت آب به مواد سیمانی بیشتر می باشد . بر اساس نتایج حاصل ، اصلاحات لازم در طرح مخلوط بتن جهت در نظر گرفتن تاثیر دوده سیلیسی بر روی خواص بتن تازه و سخت شده ارائه شده است .

ادامه مطالب را از مقاله هشت صفحه ای مربوطه از لینک زیر دانلود کنید .

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

تاثیر مقید بودن و ترک خوردگی در بتن

 

 

 

از آنجا که تنش و کرنش باهم بوجود می آیند ، هر گونه محدودیتی در تغییر شکل باعث ایجاد تنشهایی متناظر با کرنش مقید شده می شود . ( کرنش مقید شده تفاوت بین کرنش در حالت آزاد و کرنش اندازه گیری شده می باشد ) . اگر اجازه دهیم کرنش مقید شده و تنش متناظر به اندازه ای شوند که مقدار آنها از مقاومت یا ظرفیت کرنشی بتن بیشتر شود ، ترک خوردگی بوجود خواهد آمد .

 

محدودیت و قید می تواند باعث ایجاد کشش یا فشار شود که در بیشتر موارد کشش مشکل ساز است نه فشار چرا که بتن در برابر فشار مقاوم است . در کل دو نوع محدودیت وجود دارد که محدودیت داخلی و خارجی نامیده می شوند .

  • محدودیت خارجی هنگامی بوجود می آید که توسط اعضای مجاور خارجی یا پی ها از تغییر شکل مقطعی از عضو بتنی بطور کامل یا جزئی جلوگیری شود . برای توضیح محدودیتهای خارجی مقطعی از یک عضو بتنی کاملا" عایق شده را که دو انتهای آن مقید است و در معرض یک سیکل دمایی قرا دارد ، در نظر میگیریم . وقتی دما افزایش می یابد ، از انبساط بتن جلوگیری شده و در نتیجه تنشهای فشاری یکنواختی در مقطع ایجاد می شود . این تنشهامعمولا " در مقایسه با مقاومت فشاری بتن کوچک می باشند ، ضمن اینکه تا اندازه ای نیز در اثر خزش در سنین اولیه خنثی می شوند . هنگامی که دما پایین می آید و بتن سرد می شود ، از جمع شدن بتن جلوگیری شده و لذا ابتدا تنشهای فشاری پس ماند خنثی می شوند و با سرد شدن بیشتر ، تنشهای کششی ایجاد می شوند . اگر این تغییرات دما به آرامی صورت گیرد ، تنش ممکن است تا اندازه ای توسط خزش رها شود . هر چند ، چون در این مواقع بتن کامل تر می باشد ، خزش کمتر است و تنشهای کششی می توانند به اندازه ای بزرگ شوند که از مقاومت کششی بتن تجاوز نمایند . در نتیجه در مقطع ، ترکهایی ایجاد خواهد شد . اگر در بتن به مقدار کافی آرماتور وجود داشته باشد ، باز هم ترک به وجود می آید ولی در چنین حالتی بر خلاف بتن غیر مسلح که دارای چند ترک عریض می باشد ، ترکها دارای توزیع یکنواخت در عرض باریک خواهند بود .

 

  • محدودیت داخلی هنگامی ایجاد می شود که بین مقاطع مختلف اختلاف دما و رطوبت وجود داشته باشد . برای مثال می توان به بتن ریزی های حجیم اشاره کرد که پس از اتمام بتن ریزی و شروع به خودگیری ، دمای سطوح بیرونی به سرعت کاهش می یابد در حالی که در داخل این حجم عظیم از بتن کاهش دما به آرامی شکل می گیرد و همین اختلاف دما در نقاط مختلف بتن باعث کرنش حرارتی و در نتیجه ایجاد تنش می شود . در سیکل های دمایی بزرگ و آرام ، خزش به ترک خوردکی حرارتی کمک می کند . چون تأثیر رها سازی تنش توسط خزش با زمان کاهش می یابد . هر چند در حالت های دیگر ، خزش در جلوگیری از ترک خوردن مفید می باشد . برای نمونه ، اگر یک قطعه بتنی نازک کاملا " مقید شود ، بطوری که از جمع شدگی آن جلوگیری شود ، تنش کششی ایجاد شده توسط خزش رها می شود . در مورد قطعات ضخیم تر ، بدون هیچ قید خارجی ، زمانی که اختلاف رطوبت وجود دارد ، جمع شدگی لایۀ سطحی توسط هستۀ قطعه مقید می شود و در نتیجه در قسمت خارجی تنشهای کششی و در قسمت داخلی تنشهای فشاری ایجاد می شود . در اینجا هم خزش تنشها را رها می سازد . اما اگر تنش کششی از مقاومت بتن تجاوز کند ، ترکهای جمع شدگی سطحی بوجود خواهند آمد .

برگرفته از تکنولوژی بتن پرفسور نویل – ترجمه دکتر علی اکبر رمضانیانپور .

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

لینک به دیدگاه

حمله سولفاتها به بتن

 

 

 

بتنی که توسط سولفاتها مورد حمله قرار گرفته ، دارای ظاهری سفیدرنگ می باشد . معمولا" خرابی از لبه ها و گوشه ها شروع شده و با ترک خوردن و تجزیه بتن ادامه می یابد . دلیل بروز این علائم آن است که حمله سولفاتها باعث تشکیل سولفات کلسیم ( گچ ) و سولفوآلومینات کلسیم ( اترینگایت ) می گردد . هر دوی این محصولات نسبت به ترکیباتی که جایگزین آنها شده اند ، دارای حجم بیشتری بوده و باعث انبساط و ریختن بتن سخت شده می گردند .

لازم به ذکر است که دلیل این واکنشها وجود عنصر C3A ( سه کلسیم آلومینات ) در ترکیب اصلی سیمان مصرفی در بتن می باشد . در روند پروسه تولید سیمان مقداری گچ به کلینکر سیمان اضافه می شود تا از گیرش آنی که در نتیجه هیدراتاسیون C3A ایجاد می شود ، جلوگیری گردد . گچ به سرعت با C3A واکنش انجام داده و اترینگایت ( سولفو آلومینات کلسیم ) بی ضرری را ایجاد می کند .زیرا در این مرحله بتن تولیدی هنوز در حالت نیمه خمیری می باشد و می تواند افزایش حجم را در خود جای دهد .

هنگامی که بتن سخت شده از طریق منابع خارجی در معرض حمله سولفاتها قرار می گیرد ، واکنشهای مشابهی انجام می شود . نوعی از محلولهای سولفاتی ، آبهای زیرزمینی داخل بعضی رسها هستند که حاوی سولفاتهای سدیم ، کلسیم و منیزیم می باشند . این سولفاتها با Ca(OH)2 و C3A هیدراته شده ، واکنش انجام داده و به ترتیب گچ و اترینگایت تشکیل می دهند .

سولفات منیزیم دارای تاثیر مخرب بیشتری نسبت به سولفاتهای دیگر می باشد زیرا به تجزیه شدن سیلیکاتهای کلسیم ( C2S و C3S ) هیدراته شده و همچنین Ca(OH)2 و C3A هیدراته شده منتهی می گردد . سپس سیلیکات منیزیم هیدراته شده که دارای هیچ خاصیت چسبندگی نمی باشد ، تشکیل می شود .

مقدار تاثیر حمله سولفاتها به غلظت آنها و نفوذپذیری بتن بستگی دارد . اگر بتن خیلی نفوذپذیر باشد ، آب به راحتی در داخل آن نفوذ کرده و Ca(OH)2 شسته خواهد شد . تبخیر در سطح بتن رسوبات کربنات کلسیم را که از واکنش Ca(OH)2 با دی اکسید کربن تشکیل شده ، باقی میگذارد . این رسوب با ظاهری سفید رنگ به نام سفیدک شناخته می شود . معمولا" سفیدک بی ضرر می باشد . هر چند شستشوی زیاد Ca(OH)2 تخلخل را افزایش خواهد داد ، طوری که بتن به طور مستمر ضعیف تر و در مقابل حملات شیمیایی مستعدتر می شود . تبلور نمکهای دیگر هم باعث سفیدک می گردد .

از آنجا که C3A توسط سولفاتها مورد حمله قرار می گیرد ، با مصرف سیمانهایی با C3A کم نظیر سیمانهای ضد سولفات ( نوع V ) ، می توان آسیب پذیری بتن در مقابل حمله سولفاتها را کاهش داد . همچنین می توان با استفاده از سیمان پرتلند روباره آهنگدازی ( نوع IS ) و سیمان پرتلند پوزولانی ( نوع IP ) مقاومت بتن را افزایش داد . مکانیزم دقیقی که توسط آن این سیمانها باعث تاثیر مثبت می شوند ، نا مشخص است . هر چند باید تاکید نمود که نوع سیمان در مرتبه دوم اهمیت و یا حتی بی اهمیت می باشد ، مگر اینکه بتن متراکم و دارای نفوذپذیری پایین ، یعنی دارای نسبت آب به سیمان پایین باشد . نسبت آب به سیمان عامل اساسی می باشد ، اما مصرف سیمان زیاد هم متراکم نمودن بتن در نسبتهای آب به سیمان پایین را ساده می کند .

 

برگرفته از تکنولوژی بتن – تالیف پرفسور نویل – ترجمه دکتر علی اکبر رمضانیانپور .

منبع :

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
wink.gificon_gol.gif

لینک به دیدگاه

بتن‌هاي توانمند و ويژه

 

چکيده

 

سالهاي زيادي است که بتن بعنوان يک ماده ساختماني مهم در ساخت و سازه‌هاي بتني چون ساختمانها، سدها، پلها، تونلها، راهها، اسکله‌ها و برجها و سازه‌هاي خاص ديگر کاربرد دارد. در اکثر موارد به بتن بعنوان ماده‌اي مقاوم در برابر نيروهاي فشاري نگريسته مي‌شده است. انجام پروژه‌هاي وسيع تحقيقاتي بر روي مواد مختلف تشکيل دهنده بتن و ازمايش‌ بتن‌هاي مختلف با مواد جديد در سالهاي آخر قرن اخير منجر به پيدايش بتن‌هايي شده است که علاوه بر تأمين مقاومت خواص ديگري از اين ماده نظير دوام، کارايي، نرمي و مقاومت در برابر عواملي چون آتش و محيط و هوازدگي را دستخوش تغييرات اساسي نموده است. علاوه بر دگرگوني و تحول در مواد تشکيل دهندة بتن، افزودن مواد ديگري به بتن همچون افزودنيهاي مختلف، انواع الياف‌ها و حتي مواد زائدي که ارزش خاصي نداشته و باعث آلودگي محيط زيست نيز مي‌شوند، موجب پيدايش بتن‌هاي جديد با خواص جديد و بهبود يافته شده است.

در بتن مسلح علاوه بر خود بتن بر روي آرماتور نيز تحولاتي صورت پذيرفته است. بعنوان مثال کاربرد فولادهاي ضد زنگ براي مناطق بسيار خورنده، استفاده از آرماتورهاي ساخته شده با الياف‌هاي مختلف پلاستيکي و پليمري از جمله تحقيقاتي بوده است که نتايج اوليه سودمندي بدست داده است، ليکن کار بر روي آنها و تحقيقات وسيع‌تر و دراز مدت براي بررسي داوم آنها هنوز ادامه داشته و به قرن آينده خواهد رسيد.

هدف از مقالة اخير عنوان نمودن پاره‌اي از دستاوردهاي اخير در بتن و بتن مسلح و ادامه راه در سالهاي آينده مي‌باشد. در اين خصوص به تحول دستيابي به بتن‌هاي با مقاومت زياد و بسيار زياد و بالاتر ازMPa 100 و همچنين بتن‌‌‌هاي توانمند با عملکرد بالا خواهيم پرداخت. همچنين کاربرد مواد مختلف و الياف‌ها براي افزايش نرمي بتن که مسألة بسيار مهمي در پديدة زلزله و بارهاي ديناميکي بر روي سازه‌هاي بتني است، بيان خواهد شد. در ادامه به بتن‌هايي که بسيار کارا بوده و نياز به لرزاندن نداشته و درعين حال مقاومت زيادي دارند، اشاره خواهد شد. در بخش ديگري از مقاله کاربرد بتن بعنوان راه حلي براي کاهش آلودگي محيط زيست توضيح داده خواهد شد. در بخش پاياني آخرين نتايج و کاربرد محدود آرماتورها با جنسيت‌هاي مختلف از جمله الياف کربني، پليمري و پلاستيکي شده است.

 

مقدمه

 

سالهاي زيادي است که از بتن بعنوان يک مادة ساختماني مهم و با تحمل فشارهاي بالا جهت ساخت و ساز انواع سازه‌ها استفاده مي‌شود. ضعف اين مادة مهم و پر مصرف ساختماني در مقابل کشش با قرار دادن آرماتور تا حد زيادي جبران شده است. در سالهاي اخير و با بررسي دوام سازه‌هاي بتني مسلح بويژه در مناطق خورنده و سخت براي بتن نظر اکثر کارشناسان و دست‌اندرکاران کارهاي بتني به اين مسأله جلب شده است که مقاومت به تنهايي نمي‌تواند جوابگوي کليه خواص مربوط به بتن بخصوص دوام آن باشد و لازم است در طراحي بتن براي مناطق مختلف علاوه بر مسأله مقاومت و تحمل بارها در طول مدت بهره‌دهي، پايايي و دوام آن نيز مد نظر قرار گيرد. در حال حاضر با اضافه نمودن مواد مختلف بتن و تغييرات در طرح اختلاط مي‌توان به بتن‌هايي دست يافت که بدون تغيير قابل ملاحظه در مقاومت آنها از نقطه نظر دوام به بتن‌هايي با دوام بالا دست يافت. مسأله محيط زيست وآلودگي آن نيز در سالهاي اخير نظر جهانيان را بخود معطوف ساخته است. کاربرد مواد و مصالحي که در ساخت آن آلودگي کمتري به محيط منتقل گردد و همچنين برداشت مصالح طبيعي که کمتر محيط را تخريب نمايد، مورد توجه خاص قرار دارد. در اين راستا محدوديت کاربرد سنگدانه‌ها، دستيابي به مواد جديد و نيز استفاده از مواد زائد کارخانه‌ها و آلاينده‌هاي محيط زيست در بتن در رأس برنامه‌هاي تحقيقاتي پاره‌اي از کشورهاي جهان قرار گرفته است.

علاوه بر خود بتن و مصالح تشکيل‌دهندة آن در سالهاي اخير بر روي آرماتور مصرفي در سازه‌هاي بتني مسلح نيز تحولاتي صورت گرفته است. بعنوان مثال و براي پرهيز از خطر خوردگي آرماتور، از فولادهاي ضد زنگ و نيز آرماتورهاي ساخته شده با الياف‌ مختلف پلاستيکي و پليمري در محيط‌هاي بسيار خورنده استفاده مي‌شود. کار بر روي عملکرد دراز مدت چنين موادي هنوز ادامه دارد.

 

بتن با مقاومت زياد

 

امروزه بر اساس تکنولوژي رايج بتن، ساخت بتن‌هاي با مقاومت‌هاي فشاري زياد و دور از انتظار که مي‌تواند براي طراحي سازه‌هاي اجرايي رايج مورد استفاده قرار گيرند، امکان‌پذير مي‌باشد. اگر چه اغلب آيين‌نامه‌هاي بتن هنوز مقاومت بتن مورد استفاده در سازه‌ها را به MPa 60 محدود مي‌کنند، اما آيين‌نامه‌هاي جديد اخيراً حدي بالاتر از MPa 105 را نيز در نظر گرفته‌‌اند ] 1 [. ساخت بتن‌هاي با مقاومت زياد و در حد MPa 120 و کاربرد آن در ساختمان‌هاي بلند در کشورهاي پيشرفته دنيا رواج يافته است. اين مقاومت با اضافه نمودن مواد ريز و فعال به سيمان تا حدي افزايش يافته که بتن‌هايي با مقاومت‌هاي فشاري بين MPa 200 و MPa 800 و مقاومت‌هاي کششي بين MPa 30 و MPa 150 در نمونه‌هاي آزمايشگاهي بدست آمده است. براي دستيابي به چنين مقاومت‌هايي لازم است تغييراتي در طرح اختلاط داده و از مواد و افزودني‌هاي جديدي استفاده نمود.

از عوامل مهم در رسيدن به چنين مقاومت‌هايي استفاده از سنگدانه‌هاي مقاوم و کاهش حداکثر اندازه سنگدانه در مخلوط بتني براي همگني بيشتر آن مي‌باشد. همچنين با استفاده از مواد بسيار ريزدانه و با اندازه‌هاي کمتر از دهم ميکرون مي‌توان مجموعه‌اي متراکم‌تر و با تخلخل بسيار کم که بالاترين وزن مخصوص را خواهد داشت، تهيه نمود. در بتن‌هاي با مقاومت زياد بايستي تا حد ممکن نسبت آب به سيمان (w/c) را کاهش داد (امروزه حتي نسبت 18/0 = w/c استفاده شده است) که در اين حالت بعضي دانه‌هاي سيمان هيدراته نشده بصورت مواد ريزدانه پرکننده، دانسيته را افزايش داده و در نتيجه سبب افزايش مقاومت مي‌شوند. بديهي است براي تأمين کارايي چنين مخلوط‌هايي با آب بسيار کم لازم است از روان‌کننده‌ها، فوق‌روان‌کننده‌ها و پخش کننده ذرات ريز در بتن استفاده نمود. براي افزايش نرمي چنين بتن‌هايي (با افزايش مقاومت شکنندگي و تردي بتن افزايش مي‌يابد) مي‌توان به آنها الياف‌هاي کوتاه اضافه نمود. در ساخت چنين بتن‌هايي (مقاومت در حد فولاد و بالاتر) از روشهاي سخت شده تحت فشار و دما براي عمل آوري بتن و تأمين مقاومت اوليه زياد استفاده مي‌گردد.

جدول 1- مشخصات بتن بکار رفته در يک ساختمان بلند در مونترال کانادا

 

طرح اختلاط

خواص بتن

نسبت آب به سيمان 25/0

اسلامپ 250 ميلي‌متر

آب 135 ليتر

درصد هوا 4/4 درصد

سيمان نوع 1 500 کيلوگرم در متر مکعب

مقاومت فشاري 7 روزه 77 مگاپاسکال

دوده سيليس 30 کيلوگرم در متر مکعب

مقاومت فشاري 28 روزه 3/92 مگاپاسکال

شن‌با‌حداکثر اندازه10ميليمتر ‌1100‌کيلوگرم‌در مترمکعب

مقاومت فشاري 90 روزه 106 مگاپاسکال

ماسه طبيعي 700 کيلوگرم در متر مکعب

مقاومت فشاري يکساله 4/119 مگاپاسکال

ديرگير کننده 8/1 ليتر در متر مکعب

 

 

فوق روان کننده 14 ليتر در متر مکعب

 

 

 

 

بتن هاي با کارايي بسيار زياد (بتن خود متراکم)

 

امروزه در بعضي کشورهاي جهان و بويژه در ژاپن بتن جديدي با کارايي بسيار بالا که نياز به لرزاندن نداشته و خودبخود متراکم مي‌گردد ساخته شده و در برخي پروژه‌ها اجرا شده است. با داشتن کارايي بسيار زياد اين بتن در اجرا، خطر جدايي سنگدانه‌ها و خمير را نداشته و در عين حال از مقاومت زياد و دوام نسبتاً بالايي برخوردار است. در طرح اختلاط اين بتن، موارد زير در نظر گرفته شده است.

ميزان شن در اين بتن حدود 50 درصد حجم مواد جامد بتن بوده و در آن ماسه به ميزان

40 درصد حجم ملات استفاده شده است. نسبت آب به مواد ريزدانه و پودري بر اساس خواص مواد ريز بين9/0 تا 1 انتخاب مي‌شود. براي تعيين ميزان نسبت آب به سيمان و مقدار فوق روان کننده مخصوص مصرفي با استفاده از روش ميز رواني، مقدار بهينه با آزمون و خطا تعيين مي‌گردد ]2و3[.

 

 

 

آرماتورهاي غيرفولادي در بتن

 

در سالهاي اخير استفاده محدودي از آرماتورهاي غيرفلزي آغاز گشته است هر چند تحقيقات بر روي کاربرد وسيع‌تر آنها و عملکرد دراز مدت اين نوع آرماتورها ادامه دارد. اين آرماتورها که معروف به آرماتورهاي با الياف پلاستيکي (FRP) هستند از الياف مختلفي چون الياف شيشه‌اي (GFRP)، الياف آراميدي (AFRP) و الياف کربني (CFRP) در يک رزين چسباننده تشکيل شده اند. در جدول 2 خواص مکانيکي چند آرماتور اليافي که کاربرد پيدا کرد‌ه‌اند‌، آورده شده است. در شکل 2 ميله‌هاي پلاستيکي ساخته شده با الياف مختلف و فولادهاي پيش تنيدگي از نقطه نظر منحني‌هاي تنش-کرنش با يکديگر مقايسه شده‌اند.

جدول - خواص مکانيکي الياف‌هاي مختلف

 

نوع الياف

مقاومت کششي (MPa)

کرنش نهايي (٪)

E (Gpa)

آراميد

3400-2700

4-5/2

165-73

شيشهE

3500

5-3

75

شيشه S

4500

5/5-5/4

87

کربن مدول پايين

3900-3200

6/1-1

250

کربن مدول بالا

2700-2300

6/0

400

 

 

 

 

نتيجه‌گيري

 

در سالهاي اخير تحول عظيمي در تکنولوژي بتن و پيدايش بتن‌هاي جديد صورت گرفته است. اين تحولات به پيدايش بتن‌هاي با مقاومت بسيار زياد، بتن‌هاي با نرمي بالا، بتن‌هاي با آرماتورهاي غيرفلزي، بتن با کارايي بسيار زياد، بتن با سنگدانه‌هاي بازيافتي و بتن‌هاي ابداعي منجر شده است. بايد اذعان نمود که نتايج تحقيقات سالهاي آخر قرن حاضر و ادامه آنها در قرن جديد مي‌تواند نگرش تازه‌اي به بتن بعنوان يک ماده ساختماني پرمصرف بدهد. اين نتايج منجر خواهد شد تا ديدگاه بتن بعنوان تنها يک ماده با مقاومت فشاري خوب به کلي دگرگون شده و خواص جديد بتن‌هاي نوين نظر اکثر دست اندرکاران پروژه‌هاي عظيم عمراني را در جهان بخود معطوف سازد.

لینک به دیدگاه

بتن ریزی در مناطق گرمسیر

 

مشکلات بتن ریزی در مناطق گرمسیر به صورت خلاصه عبارتند از :

_ نیازبه آب بیشتر در طرح اختلاط

_افزایش سرعت گیرش سیمان

_کاهش اسلامپ و کارآئی بتن تازه به علت گیرش زود رس

_ایجاد ترکهای جمع شدگی خمیری

_مقاومت فشاری نهائی کمتر (گرچه مقاومت فشاری اولیه افزایش می یابد)

_افزایش نفوذ پذیری و کاهش محسوس پایائی بتن

_ظاهر نامطلوب سطح بتن

_کاهش زمان اجرائی و ریختن بتن و ویبره زدن (در پاره ای از موارد این زمان به 20 دقیقه کاهش می یابد)

 

تمهیدات بتن ریزی در مناطق گرمسیری

در صورتیکه دمای بتن در لحظه بتن ریزی از 32 درجه بیشتر باشد باید بتن ریزی رامتوقف کرد یا شرایط ویژه ای را جهت کنترل دمای بتن به کار برد. به هر حال در ردزهای گرم سال در مناطق گرمسیر موارد زیر باید مورد توجه قرار گیرد.

_دمای سیمان در هنگام اختلاط باید کمتر از 50 درجه باشد نگهداری سیمان در محلهای سایه و خنک و با استفاده از سیلو مناسب با رنگ آمیزی مناسب می تواند در پائین نگهداشتن دمای سیمان به کار رود.

_میزان مصرف سیمان نباید از 350 کیلوگرم بر متر مکعب کمتر باشد تا بتوان کارایی و مقاومت لازم را به دست آورد در ضمن نباید از 450 کیلوگرم بر متر مکعب بتن بیشتر باشد چون گرمای آزاد شده ناشی از فعل و انفعالات سیمان منجر به دمای زیاد بتن تازه خواهد شد.

_به کار گیری سیمان کند گیر (در حد تیپ دو)به کار گیری سیمان پوزولانی به خصوص استفاده از میکروسیلیس یا به کارگیری مواد افزودنی که موجب کاهش دمای گیرش شود توصیه می شود.

_شن و ماسه باید در محل خنک و سایه (زیر سایه بان) نگهداری شوند . در صورت لزوم سنگدانه ها با آبپاشی خنک شوند.

_به کارگیری دانه های گرد گوشه (رودخانه ای) به علت ایجاد کارائی بیشتر مناسب تر است.

_دانه بندی شن و ماسه باید حتما در محدوده استاندارد باشد و اگر در حد میانی استاندارد باشد که منجر به تولید بتن متراکم شود بهتر است.

_به کار گیری شن درشت منجر به نفوذ پذیری بیشتر می شود بنابراین به کارگیری شن ریزتر در طرح اختلاط توصیه می شود.

_حتی المکان باید آب خنک استفاده شود به کارگیری عایق حرارتی برای لوله ها و مخازن آب توصیه می شود. در صورت ناتوانی در کنترل بتن می توان از خرده یخ برای خنک کردن آب استفاده نمود.

_به هیچ وجه نباید برای کنترل اسلامپ و کارائی از آب بیشتر از حد تعیین شده در طرح اختلاط استفاده نمود.

میلگرد در شرایط محیطی فوق العاده شدید باید باید گالوانیزه با آغشته به اپوکسی باشند(در مناطق گرم و خشک به کارگیری این روشها ضروری نمی باشند)

_به کارگیری پوشش بتنی در اطراف میلگرد ها جهت تامین پایائی ضروری می باشد باید از به کارگیری مقاطع نازک بتنی با درصد زیاد میلگرد خودداری شود.

_به کار گیری قالب چوبی به علت کوچکی ضریب انتقال حرارت نسب به قالب های فلزی مرجع است.

_قالب ها باید حتما آب بندی باشند تا شیره و آب از دسترس بتن خارج نشود.

_بتن ریزی در ساعات خنک روز و در سایه انجام شود.

_حتما از تبخیر آب سطحی بتن جلوگیری به خصوص در مقابل وزش باد و تشعشع خورشید با بکارگیری روکشهائی روی سطحی جلوگیری کرد.

_تراکم بتن حتی الامکان باید به صورت کامل انجام شود تا پایائی بتن را بتوان تضمین نمود.

_عمل آوری بتن باید به طور کامل و در اولین فرصت ممکن انجام شود و به نحوی که آب سطحی بتن از دست نرود.

 

روشهای عمل آوری عبارتند از:

 

 

· جاری نمودن آب مناسب روی بتن (توجه به تبادل حرارتی و از دست رفتن حرارت بتن لازم است)

· آب پاشی به طور مدوام و با آب مناسب البته توصیه می شود به خصوص دفعات اولیه آب دارای حرارت نزدیک بتن تازه باشد تا امکان تبادل حرارتی از بین ببرد.حتی اگر قرار است آبّ روی سطح بتن گرفته شود باید چند ساعت اولیه با آب گرم روی سطح بتن آب پاشی نمود و سپس اقدام به این کار کرد.

· به کارگیری روکش مرطوب نظیر گونی، نمد، حصیر،کاه،ماسه تمیز و خاک اره.

· به کار گیری روکش غیر قابل نفوذ شامل کاغذ نفوذناپذیر،نایلون.

حداقل زمان عمل آوری در مناطق گرمسیری 7 روز می باشد ولی برای سیمانهای تیپ 2و 5 و سیمانهای پوزولانی 14 روز است.

_به کار گیری گوشه های پخ شده در قطعات جهت جلوگیری از تبخیر سریع از این نواحی.

 

 

 

نتیجه گیری

فلات مرکزی ایران کویری بوده و دارای اقلیم گرم و خشک می باشد. شرایط آب و هوای اقلیم مزبور جهت بتن ریزی و عمل آوری مناسب نمی باشد. طراحان و مجریان می توانند با به کار گیری مشخصات و روشهای اجرائی مناسب بتن با مقاومت فشاری ،پایائی و کارائی خواسته شده تولید نمایند. افزایش آب به بتن جهت افزایش کارائی نتیجه نامطلوب دارد. تامین رطوبت و جلوگیری از وزش باد از روی سطح بتن در دوره عمل آوری ضروری می باشد و به طور وسیعی از ترک خوردگی جمع شدگی جلوگیری می کند طبق آیین نامه آبا به کارگیری بتن تازه با دمای بیشتر از 32 درجه سلیسوس ممنوع است و باید در شرایط هوای گرم با خنک کردن آب و سنگدانه ها از دمای بتن کاست و سپس استفاده نمود.

لینک به دیدگاه

بتن غلتکی

مقدمه

 

بتن غلتکی بتنی است که در اجرای سازه های حجیم ( سدها ، شالوده های بزرگ و... ) کاربرد دارد و برای اجرای آن از ماشین آلات راهسازی و عملیات خاکی استفاده می شود .

چنین روش اجرایی نتایج و تبعات اولیه زیر را به دنبال خواهد داشت :

انرژی لازم برای اجرا و جا دادن این گونه مصالح بیش از مقداری است که با لرزاننده های ( ویبراتور ) معمولی تامین می گردد . به همین دلیل در صورت استفاده از مصالح و مواد سیمانی مشابه آنچه در بتن لرزاننده سنتی (CVC) یا بتن متعارف به کار برده می شوند و با اجرای لایه های متوالی بتن ، می توان به کیفیتی بهتر از کیفیت بتن متعارف (CVC) دست یافت .

 

  • از سوی دیگر ، مانند سدهای خاکی ، ناحیه بين دو لایه متوالی و ناحیه واقع در درون لایه ها با یکدیگر متفاوتند .
  • روش اجرای بتن غلتکی در مقایسه با بتن متعارف ، امکان دستیابی به سرعت زیادتری را فراهم می سازد که مزایای اقتصادی چون صرفه جویی در قیمت واحد حجم بتن و کاهشی قابل ملاحظه در زمان ساخت و همچنین در قالب بندی و ... را در پی خواهد داشت .

بتن غلتکی همچون تمامی انواع موجود بتن ، مخلوطی از مصالح سنگی خنثی ، مواد سیمانی و آب است .

بتن غلتکی مصالح و روشی نوین برای ساخت اقتصادی سازه های حجیم از جمله سدهای وزنی می باشد . در این نوع بتن ترکیبی از ویژگی های تکنولوژی بتن و خاک به کار گرفته شده و با استفاده از ماشین الات ساخت سدهای خاکی حمل ، پخش و متراکم می شود . بنابراین بتن ریزی سریعتر و هزینه اجرا به شدت کاهش می یابد .

امروزه سدهای بتن غلتکی در بسیاری از کشورهای در حال توسعه ساخته می شوند . زیرا این سدها مزایای اقتصادی و سرعت زیاد اجرای سدهای خاکی و ایمنی سدهای بتنی را تواماً در بردارند . پیشرفت حاصل در تکنولوژی بتن حجیم به منظور کاهش درصد سیمان منجر به پیدایش روش بتن غلتکی گردیده است . در این روش با منظور نمودن عوامل زیر درصد سیمان مصرفی کاهش یافته و بتن ریزی سریعتر و با هزینه ای کمتر انجام می شود:

 

  • استفاده از سنگدانه های با حداکثر ابعاد بیشتر و دانه بندی خاص
  • استفاده از پوزولان
  • استفاده از مواد افزودنی حباب ساز و روان کننده
  • استفاده از ماشین آلات حمل ، پخش و تراکم در عملیات خاکی و استفاده از ویبره سنگین در بتن ریزی

این نوع بتن به دلیل شرایط خاص اجرایی باید دارای روانی مناسب باشد . هنگامی که بتن غلتکی خیلی سفت باشد دانه بندی و چسبندگی مناسب جهت تراکم یکنواخت را نداشته باشد ، قسمت های تحتانی لایه تراکم مناسب را نمی بیند و هرگاه روانی این بتن خیلی زیاد باشد تحمل وزن غلتک را نداشته و غلتک لرزاننده نمی تواند مورد استفاده قرار گیرد . بنابراین در این نوع بتن انتخاب مصالح و نسبت های اختلاط از اهمیت خاصی برخوردار می باشد .

ملاحظات اساسی در انتخاب نسبت اختلاط مناسب بتن غلطکی عبارتند از :

1. روانی مناسب ( توجه به دانه بندی و درصد آب مناسب برای تراکم )

2. مقاومت کافی ( تامین خواص مکانیکی و چسبندگی درزها )

3. آب بندی ( کنترل تراوش )

4. حرارت هیدراتاسیون کم ( محدود نمودن پتانسیل ترک های حرارتی )

سه روش طراحی سد بتن غلتکی :

روش طراحی سد بتن غلتکی در سال های 1970 به سه طریق متفاوت در حال شکل گیری و تبیین بود . در ایالات متحده نوع کم سیمان آن مبتنی بر روش های مربوط به مصالح و اجرای سدهای خاکی توسط گروه مهندسین ارتش (Army Corps of Engineers ) توسعه یافت. مهندسین انگلیسی گزینه دیگری با خمیر سیمان زیاد به صورت تلفیقی از طرح اختلاط بتن متدوال و روش های ساخت سدهای خاکی را در نظر داشتند . گروه مهندسین ژاپنی روش دیگری را تعقیب نمودند که سد بتنی متراکم شده با غلتک ( RCD ) نامیده می شد . از سه حالت فوق RCD محافظه کارانه ترین حالت نسبت به سد بتنی مرسوم و تجارب اجرایی آن می باشد.

1- روش طرح مخلوط با خمیر زیاد (روش انگلیسی):

روش طراحی مخلوط با خمیر زیاد اولین بار توسط مهندسی به نام دانستان (Dunstan ) ابداع گردید و اداره عمران ایالات متحده بعداً تغییراتی در آن اعمال نمود که در سد آپراستیل واتر (Upper Still Water ) به کار برد . این روش با مفاهیم طراحی سد بتن غلتکی با خمیر زیاد منطبق بوده و در آن کل سازه غیرقابل نفوذ منظور می شود و چسبندگی بین لایه ها با توجه به ویژگی مخلوط فراهم می گردد . به منظور دستیابی به چنین معیارهایی مواد شیمیایی بیشتر در مخلوط مصرف می شود تا بتن غلتکی با خمیر زیاد حاصل شود .

2- روش سد بتنی متراکم شده با غلطک RCD ( روش ژاپنی) :

معیارهای طراحی مخلوط در روش RCD به شرح زیر است :

*مقدار سیمان بایستی حتی الامکان کم در نظر گرفته شود در حالی که با مشخصه های مقاومت در نظر گرفته شده سازگار باشد . مقداری خاکستر بادی به عنوان ماده افزودنی مصرف شده تا بدین وسیله گرمای هیدراتاسیون و نیازهای آب مخلوط کاهش یابد .

2* لازم است نسبتی از ماسه به مصالح سنگدانه ای درشت دانه بیش از نسبت در نظر گرفته شده برای بتن حجیم معمولی منظور شود تا جدا شدن دانه ها کاهش یافته و تسهیلاتی در عمل تراکم با غلتک های ارتعاشی فراهم آورد .

3- روش کم سیمان (گروه مهندسین ارتش آمریکا) :

این روش مبتنی بر تجارب حاصله در هفت پروژه بتن غلتکی می باشد . روش مذکور از دستورالعمل ACI شماره 3/211 تحت عنوان روش استاندارد برای انتخاب نسبت های اختلاط در بتن بدون اسلامپ پیروی می کند . دستورالعمل فوق شامل چند جدول است که از روی تجربیات مذکور در ارتباط با بتن غلتکی تهیه شده است . این روش تعیین نسبت های اختلاط می تواند برای دامنه وسیعی از مصالح و مشخصات پروژه مورد استفاده قرار گیرد .

لینک به دیدگاه

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید .

مهمان
ارسال پاسخ به این موضوع ...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   حذف قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.


×
×
  • اضافه کردن...