رفتن به مطلب

اطلاعات کامل درباره سنسورهاوکاربردها


ارسال های توصیه شده

سنسور چیست ؟

 

 

سنسور المان حس کننده ای است که کمیتهای فیزیکی مانند فشار، حرارت، رطوبت، دما، و ... را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل می کند. این سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانند PLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جمله PLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد. سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاهها می شوند.

 

سنسورهای بدون تماس

 

سنسورهای بدون تماس سنسورهائی هستند که با نزدیک شدن یک قطعه وجود آنرا حس کرده و فعال می شوند. این عمل به نحوی که در شکل زیر نشان داده شده است می تواند باعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم گردد.

 

کاربرد سنسورها

 

1- شمارش تولید: سنسورهای القائی، خازنی و نوری

 

2- کنترل حرکت پارچه و ...: سنسور نوری و خازنی

 

3- کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح

 

4- تشخیص پارگی ورق: سنسور نوری

 

5- کنترل انحراف پارچه: سنسور نوری و خازنی

 

6- کنترل تردد: سنسور نوری

 

7- اندازه گیری سرعت: سنسور القائی و خازنی

 

8- اندازه گیری فاصله قطعه: سنسور القائی آنالوگ

 

مزایای سنسورهای بدون تماس

 

سرعت سوئیچینگ زیاد: سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، بطوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا 25KHz کار می کنند.

 

طول عمر زیاد: بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار و ... دارای طول عمر زیادی هستند.

 

عدم نیاز به نیرو و فشار: با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو و فشار نیازی نیست.

 

قابل استفاده در محیطهای مختلف با شرایط سخت کاری: سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و ... قابل استفاده می باشند.

 

 

 

عدم ایجاد نویز در هنگام سوئیچینگ: به دلیل استفاده از نیمه هادی ها در طبقه خروجی، نویزهای مزاحم Bouncing Noiseایجاد نمی شود.

لینک به دیدگاه

سنسورهای القائی

 

سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی PLC ارسال نمایند. مانند:.

 

سنسورهای مادون قرمز پسیو

 

وسایل الکترونیکی هستند که تشعشعات اینفرارد از اجسام و اهداف را در میدان دیدش اندازه گیری می کند. به این سنسورها "سنسورهای PIR" گفته می شود که از مخفف Passive InfraRed sensors گرفته شده است.

 

 

 

PIR ها گاهی برای آشکارسازی اهداف متحرک بکار می روند، به این صورت که منبع انتشار اینفرارد با یک دما، مانند بدن، از جلوی منبع اینفرارد دیگر با دمای دیگر، مانند دیوار عبور می کند و بر اساس این تغییر آشکار سازی صورت می گیرد.

 

همه اشیاء اینفرارد (مادون قرمز) تشعشع می کنند. این تشعشع از دید انسان نامرئی است ولی می تواند با وسایل الکترونیکی که برای این هدف ساخته شده اند، آشکار شود. عبارت "پسیو" در این سنسور به این معنی است که این سنسور از خود هیچ نوع انرژی ساتع نمی کند، و فقط تشعشعات اینفرارد را از قسمت جلوئی سنسور )Sensor Face( دریافت می کند. در هسته یا مرکز PIR یک یا دسته ای از سنسورهای نیمه هادی وجود دارد، که مساحت تقریبی آن یک چهارم اینچ مربع است. این ناحیه از مواد گرما برقی )pyroelectric( ساخته شده است.

 

 

 

سنسورهای فعلی روی چیپ ها از مواد گرما برقی طبیعی یا مصنوعی و معمولا به صورت یک غشا یا لایه نازک ساخته می شوند. بعضی از ترکیبات عبارتند از: گالیوم نیترید)GaN(، کاسیم نیترات )CsNO3)، پلى وينيل فلوراید، مشتقات فنیل پیرازین و لیتیوم تانتالیک (LiTaO3( که مانند کریستال است و خواص پیرو الکتریک و پیزو الکتریک -ويژگى برخى کريستالها که به هنگام اعمال ولتاژ به انها تحت فشار قرار مى گيرند يا به هنگام قرار گرفتن در معرض فشار مکانيکى يک ولتاژ توليد مى کنند- را با هم دارد.

 

سنسور PIR اغلب به عنوان قسمتی از مدارات مجتمع ساخته می شود و ممکن است شامل یک، دو، سه یا چهار "پیکسل"، شامل مساحتهای مساوی از مواد گرما برقی باشد. ممکن است سنسورها را به صورت جفتهائی به ورودیهای مخالف تقویت کننده های تفاضلی متصل کنند. در چنین ترکیبی اندازه گیریهای PIR ها یکدیگر را خنثی کرده و در نتیجه اندازه متوسط دمای میدان دید از سیگنال الکتریکی برداشته می شود. این به سنسور اجازه می دهد تا در مقابل آشکارسازی خطا که ناشی از تشعشعات نوری یا روشنائی های بزرگ است، مقاومت کند. نورهای روشن پیوسته می تواند این سنسور را اشباع کرده و باعث می شود تا سنسور نتواند اطلاعات بیشتری را ثبت کند. در عین حال این ترکیب تفاضلی، تداخل مد مشترک را مینیمم می کند که مانع از راه اندازی ناشی از میدانهای الکتریکی نزدیک به وسیله می شود. به هر حال این ترکیب نمی تواند دما را اندازه گیری کند و مختص آشکار سازی اشیاء متحرک است.

 

 

 

 

آشکارسازهای مبتنی بر سنسورهای PIR

 

در این آشکار سازها معمولا سنسور PIR روی برد مدار چاپی سوار است که دارای تجهیزاتی برای تفسیر سیگنال دریافتی می باشد. مدار اصلی در محفظه ای قرار دارد که در مکانی قرار می گیرد که در میدان دید سنسور قرار نگیرد. اینفرارد می تواند از پنجره به سنسور برسد چون پلاستیک بکار رفته در آن از دید اینفرارد شفاف است و برای حفاظت سنسور از گرد و غبار و حشرات که باعث پوشاندن میدان دید می شوند، بکار می رود.

 

مکانیسم کوچکی برای متمرکز کردن انرژی اینفرارد دور دست به سطح سنسور بکار می رود. به این صورت که پنجره فوق الذکر را از لنزهای فشرده شده ای می سازند و گاهی اوقات از آینه های سهموی برای این کار استفاده می کنند. همچنین یک پنجره ----- برای محدود کردن طول موج ورودی بین 14-8 میکرومتر قرار می گیرد که مهمترین تشعشعات اینفرارد انسان در آن قرار دارد و قویترین آنها 9/4 میکرومتر است.

 

وسیله PIR می تواند به عنوان یک دوربین بکار رود که می تواند مقدار انرژی متمرکز شده اینفرارد را به سطح خود در خود برای چند لحظه نگه دارد. یک بار که توان به PIR اعمال شد، انرژی برای چند لحظه در حالت سکون می ماند و می تواند یک رله کوچک را تحریک کند. این رله می تواند دسته ای از اتصالات الکتریکی را کنترل کند که به ورودی هشدار یک آشکار ساز متصل است. اگر انرژی تمرکز شده در طول زمان تغییر کند این وسیله حالت هشدار را تغییر می دهد. این رله معمولا یک رله نرمال بسته )NC( یا فرم B است. برای اطلاعات بیشتر در مورد رله این مقاله را مطالعه نمائید.

 

یک شخص که وارد میدان دید سنسور شده آشکار می شود در صورتیکه انرژی اینفرارد ارسالی بدن متجاوز با قسمتی از مدار که انرژی محیط قبلی دیده شده توسط سنسور را از محیط حفاظت شده را دارد، تداخل پیدا کند. حالا این بخش از چیپ نسبت به وقتیکه شخص وجود نداشت گرمتر شده است. حال اگر متجاوز حرکت کند یک نقطه داغ را روی سطح سنسور توسط آینه متمرکز کننده جابجا می کند. این حرکت انرژی رله را تخلیه و اتصال هشدار را برقرار می کند. به طور عکس اگر شخص سعی کند با گرفتن یک عایق حرارتی از روبروی سنسور عبور کند، یک نقطه سرد را روی سطح سنسور جابجا کرده و انرژی رله را تخلیه و هشدار را فعال می کند. تنها راه این است که عایق همدما با میدان دید قبلی سنسور باشد.

 

 

 

سازندگان این سنسور پیشنهادات زیادی برای مکان نصب درست، برای جلوگیری از هشدار اشتباه دارند. آنها پیشنهاد می دهند که سنسور PIR را در مسیری که از شیشه دیده شود قرار ندهید. اگر چه طول موجهای حساس دستگاه از شیشه به راحتی نفوذ نمی کنند، ولی منابع اینفرارد قوی مانند موتور ماشینها یا بازتاب نور آفتاب می توانند با گول زدن دستگاه، هشدار اشتباه (بدون متجاوز) را فعال کنند. البته شخصی که بتواند از پشت سنسور عبور کند نیز نمی تواند آشکار شود.

 

 

 

همچنین توصیه شده که سنسور PIR در نزدیکی کانالهای هوا قرار نگیرد. زیرا با اینکه تشعشع اینفرارد هوا بسیار کم است ولی با خنک شدن پلاستیک محافظ و یا لنز می توانند به عنوان هدف خنک تلقی شده و هشدار را اشتباها فعال نمایند.

 

 

 

سنسورهای PIR با ترکیبات مختلف کاربردهای فراوانی دارد. اکثر کاربرد این سنسور در سیستمهای حفاظتی خانه است و رنجی در حدود 10 متر دارند. بعضی PIR های بزرگتر با یک آینه می توانند تغییرات اینفرارد را در 30 متری یا بیشتر حس کنند. همچنین PIR هائی وجود دارند که با آینه های چند جهتی می توانند میدان دید عریض تری در حدود 110 درجه یا برعکس باند باریک را حس کنند.

لینک به دیدگاه

کنترل کننده های از راه دور حرارتی مبتنی بر سنسورهای PIR

 

 

 

طراحان از خاصیت اندازه گیری از راه دور سنسورهای PIR استفاده کرده و با استفاده از خروجی "غیر تفاضلی" سنسور برای کنترل حرارت استفاده می کنند. سیگنال خروجی با سیگنال کالیبره شده بر اساس جنس و حرارت دیده شده توسط سنسور، مقایسه می شود. بدون کالیبراسیون PIR فقط می تواند تغییرات دمائی را به ما نشان دهد و نمی تواند دمای حقیقی آن را به ما بدهد.

 

 

 

 

 

 

سنسورهای بیوالکتریکی Biosensors

 

بیوسنسورها طی سالهای اخیر مورد توجه بسیاری از مراکز تحقیقاتی قرار گرفته است. بیوسنسورها یا سنسورهای بر پایه مواد بیولوژیکی اکنون گستره ی وسیعی از کاربردها نظیر صنایع دارویی، صنایع خوراکی، علوم محیطی، صنایع نظامی بخصوص شاخه Biowar و ... را شامل میشود.

 

توسعه بیوسنسورها از 1950 با ساخت الکترود اکسیژن توسط لی لند کلارک در سین سیناتی آمریکا برای اندازه گیری غلظت اکسیژن حل شده در خون آغاز شد. این سنسور همچنین بنام سازنده ی آن گاهی الکترود کلارک نیز خوانده میشود. بعداً با پوشاندن سطح الکترود با آنزیمی که به اکسیده شدن گلوکز کمک میکرد از این سنسور برای اندازه گیری قند خون استفاده شد. بطور مشابه با پوشاندن الکترود توسط آنزیمی که قابلیت تبدیل اوره به کربنات آمونیوم را داراست در کنار الکترودی از جنس یون NH4++ بیو سنسوری ساخته شده که میتوانست میزان اوره در خون یا ادرار را اندازه گیری کند. هر کدام از این دو بیوسنسور اولیه از ترنسدیوسر متفاوتی در بخش تبدیل سیگنال خویش استفاده میکردند. در نوع اول میزان قند خون با اندازه گیری جریان الکتریکی تولید شده اندازه گیری میشد (آمپرومتریک) در حالیکه در سنسور اوره اندازه گیری غلظت اوره بر اساس میزان بار الکتریکی ایجاد شده در الکترودهای سنسور صورت می پذیرفت)پتنشیومتریک Potentiometric(.

 

ممکن است روزی فرا رسد که بیمار بدون نیاز به مراجعه به پزشک و تنها بر مبنای اطلاعاتی که توسط یک COBD یا Chip-on-Board-Doctor فراهم میشود نوع بیماری تشخیص داده شده و سپس داروهای مورد نیاز مستقیماً درون خون تزریق شود. این مسئله باعث خواهد شد که دوز مصرفی دارو بسیار پایین آمده و ضمناً از میزان اثرات جانبی دارو Side-Effect بطرز فاحشی کاسته شود، چرا که دارو مستقیماً به محل مورد نیاز در بدن ارسال میشود.

 

کاری که یک بیوسنسور انجام میدهد تبدیل پاسخ بیولوژیکی به یک سیگنال الکتریکی است و شامل دو جزء اصلی: پذیرنده Receptor و آشکارکننده Detector است. قابلیت انتخابگری یک بیوسنسور توسط بخش پذیرنده تعیین میشود. آنزیمها، آنتی بادی ها، و لایه های لیپید (چربی) مثالهای خوبی برای Receptor هستند.

 

وظیفه دتکتور تبدیل تغییرات فیزیکی یا شیمیایی با تشخیص ماده مورد تجزیه )Analyte( به یک سیگنال الکتریکی است. کاملاً واضح است که دتکتورها قابلیت انتخاب در نوع واکنش صورت گرفته را ندارند. انواع دتکتورهای (یا ترانسدیوسرها یا مبدلها یا آشکارسازها) مورد استفاده در بیوسنسورها شامل: الکتروشیمیایی، نوری، پیزوالکتریک و حرارتی میباشند. در نوع الکتروشیمیای عمل تبدیل به یکی از صورتهای: آمپرومتریک، پتانشیومتریک، و امپدانسی صورت میپذیرد. متداولترین الکترودهای مورد استفاده در نوع پتانشیومتریک شامل: الکترود شیشه ای Glass Electrode، الکترود انتخابگر یونی Ion-Selective، و ترانزیستور اثرمیدان حساس یونی Ion-sensitive FET یا ISFET هستند.

 

بطورکلی یک بیوسنسور شامل یک سیستم بیولوژیکی ایستا Immobilized نظیر یک دسته سلول، یک آنزیم، و یا یک آنتی بادی و یک وسیله اندازه گیری است. در حضور مولکول معینی سیستم بیولوژیکی باعث تغییر خواص محیط اطراف میشود. وسیله اندازه گیری که به این تغییرات حساس است، سیگنالی متناسب با میزان و یا نوع تغییرات تولید میکند. این سیگنال را سپس میتوان به سیگنالی قابل فهم برای دستگاههای الکترونیکی تبدیل کرد.

 

مزایای بیوسنسورها بر سایر دستگاههای اندازه گیری موجود را میتوان بطور خلاصه بصورت زیر بیان کرد:

 

مولکولهای غیرقطبی زیادی در ارگانهای زنده شکل میگیرند که به بیشتر سیستمهای موجود اندازه گیری پاسخ نمی دهند. بیوسنسورها میتوانند این پاسخ را دریافت کنند.

 

مبنای کار آنها بر اساس سیستم بیولوژیکی ایستا Immobilized تعبیه شده در خود آنهاست، در نتیجه اثرات جانبی بر سایر بافتها ندارند.

 

کنترل پیوسته و بسیار سریع فعالیتهای متابولیسمی توسط این سنسورهای امکان پذیر است.

لینک به دیدگاه

سنسور تشخیص حرکت بدن انسان PIR

 

همانطور که میدانید امروزه استفاده از سنسور های تشخیص حرکت رونق بسیار بالایی پیدا کرده ، هم در زمینه های امنیتی و حفاظتی و هم در مسائل صرفه جویی و بهینه سازی ، سنسور های PIR یا PASSIVE INFRA RED سنسورهایی هستند که طول موج Infrared محیط اطراف را دریافت میکنند. در همین زمینه مطالبی به درد بخور و مدارات آماده برای شما دوستان آماده کردم ، همچنین مقاله ای کامل برای ارایه به اساتید موجود میباشد . همچنین به علت کار این سنسور در موج مادون قرمز مقاله ای نیز در زمینه موجهای مادون قرمز در همین مطلب موجود است که اگر از حق نگذریم مقاله ای کامل و بدون عیب و نقصی میباشد .

 

هر جسمی که دمایش بالاتر از صفر درجه مطلق باشد دارای تشعشعات Infrared یا مادون قرمز میباشد . اما این موج دارای طول موج های مختلف برای درجه حرارتهای متفاوت است . کاری که این سنسور انجام میدهد در واقع دریافت این امواج در رنج بدن انسان و تشخیص آن میباشد . از این سنسور در دستگاه هایی که برای تشخیص حرکت بدن انسان حتی به صورت جزئی استفاده میشود و از نظر دقت و قابلیت اعتماد در سطح بالایی میباشد بدین وسیله شما یک آشکار ساز حرکت دارید که فقط به حرکات بدن انسان حساس است ،

 

در مسائل امنیتی ، مثل دزدگیرها مفید میباشد و در مسائل مربوط به بهینه سازی مصرف انرژی میتواند بسیار مفید واقع شود . در روبات زیر که تصویر آنرا مشاهده میکنید برای پیدا کردن انسان در محیط های تاریک و فاقد نور کاربرد دارد .

 

 

 

 

تعریف ترانسدیوسر

 

یک ترانسدیوسر بنا به تعریف ، قطعه ای است که وظیفه تبدیل حالات انرژی به یکدیگر را برعهده دارد ، بدین معنی که اگر یک سنسور فشار همراه یک ترانسدیوسر باشد ، سنسور فشار پارمتر را اندازه می گیرد و مقدار تعیین شده را به ترانسدیوسر تحویل می دهد ، سپس ترانسدیوسر آن را به یک سیگنال الکتریکی قابل درک برای کنترلر و صد البته قابل ارسال توسط سیم های فلزی ، تبدیل می کند .بنابراین همواره خروجی یک ترانسدیوسر ، سیگنال الکتریکی است که در سمت دیگر خط می تواند مشخصه ها و پارامترهای الکتریکی نظیر ولتاژ ، جریان و فرکانس را تغییر دهد ، البته به این نکته باید توجه داشت که سنسور انتخاب شده باید از نوع سنسورهای مبدل پارامترهای فیزیکی به الکتریکی باشد و بتواند مثلأ دمای اندازه گیری شده را به یک سیگنال بسیار ضعیف تبدیل کند که در مرحله بعدی وارد ترانسدیوسر شده و سپس به مدارهای الکترونیکی تحویل داده خواهد شد .

 

برای درک این مطلب به تفاوتهای میان دو سنسور انداره گیر دما می پردازیم : ترموکوپل و درجه حرارت جیوه ای ، دو نوع سنسور دما هستند که هر دو یک عمل را انجام می دهند ، اما ترموکوپل در سمت خروجی سیگنال الکتریکی ارائه می دهد ، در حالی که درجه حرارت جیوه ای خروجی خود را به شکل تغییرات ارتفاع در جیوه داخلش نشان می دهد .

 

 

 

تعریف ترانسمیتر

 

ترانسمیتر وسیله ای است که یک سیگنال الکتریکی ضعیف را دریافت کرده و به سطوح قابل قبول برای کنترلرها و مدارهای الکترونیکی تبدیل می کند ، مثلأ یک حلقه فیدبک سیگنالی در سطح ماکروولت یا میلی ولت یا میلی آمپرتولید می کند و این سیگنال ضعیف می تواند با عبور از ترانسمیتر به سیگنالی در سطوح صفر تا ده ولت و یا 4 تا 20 میلی آمپر تبدیل شود. ترانسمیترها عمومأ از قطعاتی مثلop-amp برای تقویت و خطی کردن این سطوح ضعیف سیگنال استفاده می کند . سنسورها و ملحقات آنها مثل ترانسدیوسرها را در گروه های بزرگی تحت عنوان ابزار دقیق قرار داده و آنها را بر اساس نوع انرژی قابل استفاده و روشهای تبدیل ، دسته بندی می کنند .

لینک به دیدگاه

سنسورهای فشار

 

فشار را به کمک دستگاههای فشار سنج اندازه می‌گیرند، عمده‌ترین فشار سنجها که بر حسب مکانیزم کارشناسان نامگذاری شده است عبارتند از:

 

فشارسنج لوله U شکل

 

فشارسنج مکلئود

 

فشارسنج جیوه‌ای

 

فشارسنج ترموکوپل

 

فشارسنج صوتی

 

فشارسنج خازنی

 

فشارسنج گاز ایده‌ال

 

فشارسنج لوله U شکل

 

ساده ترین و معروفترین آنها فشار سنج لوله U شکل است که در آن مقداری جیوه در لوله U شکل ریخته شده و میزان اختلاف فشار محیط )هوا که برابر p0 است( و ماده داخل فشارسنج که بر مایع جیوه فشار وارد می‌کند از طریق اختلاف ارتفاع ستون مایع جیوه اندازه گیری می‌شود. بنابراین از این طریق فشار واقعی را می‌توانیم بدست آوریم: )P = P0 + ρg )h - h0

 

در رابطه اخیر P فشار و ρ چگالی ماده و P0 فشار اتمسفر ، h0 ارتفاع ستون مایع در فشار اتمسفر ، g شتاب جاذبه و h ارتفاع ستون مایع در فشار ماده می‌باشد.

 

 

 

فشارسنج جیوه‌ای)Mercury Barometer(

 

این فشار سنج اساساً از یک لوله خالی از هوا درست شده است که یک طرف آن مسدود و طرف دیگر آن که باز است در ظرف پر از جیوه فرو برده شده است. فشار هوای بیرون ، جیوه را از منبع به سمت داخل لوله می‌راند. جیوه تا حدی که وزن آن در داخل لوله ، دقیقاً معادل نیروی ناشی از فشار هوا گردد در لوله فشار سنج بالا می‌رود و سپس در حالت تبادل و سکون باقی می‌ماند. با تغییر فشار هوا ، سطح جیوه در داخل لوله نیز بالا و پایین خواهد رفت. در شرایط نرمال جیوه به اندازه 92/29 اینچ یا 760 میلیمتر در لوله بالا می‌آید که فشاری معادل 15/1013 میلی بار است. جیوه در داخل لوله فشارسنج به دلیل خاصیت کشش سطحی دارای یک سطح محدب است که هنگام تعیین فشار، باید بالاترین سطح محدب قرائت شود.

 

 

 

 

 

فشارسنج فلزی )Aneroid(

 

فشارسنج فلزی وسیله‌ای است مکانیکی که از یک محفظه قوطی شکل استوانه‌ای بدون هوا تشکیل شده است؛ با تغییر فشار هوا این محفظه منقبظ یا منبسط می‌شود. با یک سیستم نسبتاً پیچیده که مرکب از تعدادی اهرم و قرقره است این تغییرات بزرگ شده و به یک عقربه که بر روی صفحه مدرجی حرکت می‌کند، منتقل می‌شود. یک شاخص متحرک که می‌تواند در یک نقطه ثابت شود بر روی فشار سنج تعبیه شده است تا بتوان تغییرات فشار را نسبت به آخرین قرائت اندازه گیری کرد.

 

فشار نگار )Barograph(

 

فشار نگار مشابه فشارسنج فلزی است با این تفاوت که اثر تغییرات فشار در محفظه بدون هوا ، به یک قلم انتقال داده شده و قلم بر روی کاغذی که دور یک استوانه چرخان پیچیده شده است خط پیوسته‌ای را رسم می‌کند. محور عمودی این صفحه بر حسب واحد فشار و محور افقی آن بر حسب زمان مدرج شده است که معمولاً برای هر دو ساعت یک خط وجود دارد. فشار نگارهای دقیقی هم ساخته شده است که قادرند تغییرات فشار را تا یک دهم میلی بار اندازه گیری نمایند، این دستگاهها میکرو باروگراف نامیده شده‌اند.

لینک به دیدگاه

سنسورها در ربات

 

سنسورها اغلب برای درک اطلاعات تماسی، تنشی، مجاورتی، بینایی و صوتی به‌کار می‌روند. عملکرد سنسورها بدین‌گونه است که با توجه به تغییرات فاکتوری که نسبت به آن حساس هستند،

 

سطوح ولتاژی ناچیزی را در پاسخ ایجاد می‌کنند، که با پردازش این سیگنال‌های الکتریکی می‌توان اطلاعات دریافتی را تفسیر کرده و برای تصمیم‌گیری‌های بعدی از آن‌ها استفاده نمود.

 

سنسورها را می‌توان از دیدگاه‌های مختلف به دسته‌های متفاوتی تقسیم کرد که در ذیل می‌آید:

 

a.سنسور محیطی: این سنسورها اطلاعات را از محیط خارج و وضعیت اشیای اطراف ربات، دریافت می‌نمایند

 

b.سنسور بازخورد: این سنسور اطلاعات وضعیت ربات، از جمله موقعیت بازوها، سرعت حرکت و شتاب آن‌ها و نیروی وارد بر درایورها را دریافت می‌نمایند.

 

c.سنسور فعال: این سنسورها هم گیرنده و هم فرستنده دارند و نحوه کار آن‌ها بدین ترتیب است که سیگنالی توسط سنسور ارسال و سپس دریافت می‌شود.

 

d.سنسور غیرفعال: این سنسورها فقط گیرنده دارند و سیگنال ارسال شده از سوی منبعی خارجی را آشکار می‌کنند، به‌ ‌همین دلیل ارزان‌تر، ساده‌تر و دارای کارایی کمتر هستند.

 

سنسورها از لحاظ فاصله‌ای که با هدف مورد نظر باید داشته باشند به سه قسمت تقسیم می‌شوند:

 

سنسور تماسی: این نوع سنسورها در اتصالات مختلف محرک‌ها مخصوصا در عوامل نهایی یافت می‌شوند و به دو بخش قابل تفکیک‌اند.

 

i.سنسورهای تشخیص تماس

 

ii.سنسورهای نیرو-فشار

 

سنسورهای مجاورتی: این گروه مشابه سنسورهای تماسی هستند، اما در این مورد برای حس کردن لازم نیست حتما با شی در تماس باشد. عموما این سنسورها از نظر ساخت از نوع پیشین دشوارترند ولی سرعت و دقت بالاتری را در اختیار سیستم قرار می‌دهند.

 

دو روش عمده در استفاده از سنسورها وجود دارد:

 

i.حس کردن استاتیک: در این روش محرک‌ها ثابت‌اند و حرکت‌هایی که صورت می‌گیرد بدون مراجعه لحظه‌ای به سنسورها صورت می‌گیرد.به عنوان مثال در این روش ابتدا موقعیت شی تشخیص داده می‌شود و سپس حرکت به سوی آن نقطه صورت می‌گیرد.

 

ii.حس کردن حلقه بسته: در این روش بازوهای ربات در طول حرکت با توجه به اطلاعات سنسورها کنترل می‌شوند. اغلب سنسورها در سیستم‌های بینا این‌گونه‌اند.

لینک به دیدگاه

حال از لحاظ کاربردی با نمونه‌هایی از انواع سنسورها در ربات آشنا می‌شویم:

 

a.سنسورهای بدنه )Body Sensors(این سنسورها اطلاعاتی را درباره موقعیت و مکانی که ربات در آن قرار داردفراهم می‌کنند. این اطلاعات نیز به کمک تغییر وضعیت‌هایی که در سوییچ‌ها حاصل می‌شود، به دست می‌آیند. با دریافت و پردازش اطلاعات بدست آمده ربات می‌تواند از شیب حرکت خود و این‌که به کدام سمت در حال حرکت است آگاه شود. در نهایت هم عکس‌العملی متناسب با ورودی دریافت شده از خود بروز می‌دهد.

 

b.سنسور جهت‌یاب مغناطیسی)Direction Magnetic Field Sensor( با بهره‌گیری از خاصیت مغناطیسی زمین و میدان مغناطیسی قوی موجود، قطب‌نمای الکترونیکی هم ساخته شده است که می‌تواند اطلاعاتی را درباره جهت‌های مغناطیسی فراهم سازد. این امکانات به یک ربات کمک می‌کند تا بتواند از جهت حرکت خود آگاه شده و برای تداوم حرکت خود در جهتی خاص تصمصم‌گیری کند. این سنسورها دارای چهار خروجی می‌باشند که هرکدام مبین یکی از جهت‌ها است. البته با استفاده از یک منطق صحیح نیز می‌توان شناخت هشت جهت مغناطیسی را امکان‌پذیر ساخت.

 

c.سنسورهای فشار و تماس )Touch and Pressure Sensors( شبیه‌سازی حس لامسه انسان کاری دشوار به نظر می‌رسد. اما سنسورهای ساده‌ای وجود دارند که برای درک لمس و فشار مورد استفاده قرار می‌گیرند. از این سنسورها در جلوگیری از تصادفات و افتادن اتومبیل‌ها در دست‌اندازها استفاده می‌شود. این سنسورها در دست‌ها و بازوهای ربات‌ هم به منظورهای مختلفی استفاده می‌شوند. مثلا برای متوقف کردن حرکت ربات در هنگام برخورد عامل نهایی با یک شی. همچنین این سنسورها به ربات‌ها برای اعمال نیروی کافی برای بلند کردن جسمی از روی زمین و قرار دادن آن در جایی مناسب نیز کمک می‌کند. با توجه به این توضیحات می‌توان عملکرد آن‌ها را به چهار دسته زیر تقسیم کرد: 1- رسیدن به هدف، 2- جلوگیری از برخورد، 3- تشخیص یک شی.

 

d.سنسورهای گرمایی )Heat Sensors( یکی از انواع سنسورهای گرمایی ترمینستورها هستند. این سنسورها المان‌های مقاومتی پسیوی هستند که مقاومتشان متناسب با دمایشان تغییر می‌کند. بسته به اینکه در اثر گرما مقاومتشان افزایش یا کاهش می‌یابد، برای آن‌ها به ترتیب ضریب حرارتی مثبت یا منفی را تعریف می‌کنند. نوع دیگری از سنسورهای گرمایی ترموکوپل‌ها هستند که آن‌ها نیز در اثر تغییر دمای محیط ولتاژ کوچکی را تولید می‌کنند. در استفاده از این سنسورها معمولا یک سر ترموکوپل را به دمای مرجع وصل کرده و سر دیگر را در نقطه‌ای که باید دمایش اندازه‌گیری شود، قرار می‌دهند

 

e. سنسورهای بویایی )Smell Sensors( تا همین اواخر سنسوری که بتواند مشابه حس بویایی انسان عمل کند، وجود نداشت. آنچه که موجود بود یک‌سری سنسورهای حساس برای شناسایی گازها بود که اصولا هم برای شناسایی گازهای سمی کاربرد داشتند. ساختمان این سنسورها به این صورت است که یک المان مقاومتی پسیو که از منبع تغذیه‌ای مجزا، با ولتاژ 5+ ولت تغذیه می‌شود، در کنار یک سنسور قرار دارد که با گرم شدن این المان حساسیت لازم برای پاسخ‌گویی سنسور به محرک‌های محیطی فراهم می‌شود. برای کالیبره کردن این دستگاه ابتدا مقدار ناچیزی از هر بو یا عطر دلخواه را به سیستم اعمال کرده و پاسخ آن را ثبت می‌کنند و پس از آن این پاسخ را به عنوان مرجعی برای قیاس در استفاده‌های بعدی به کار می‌‌برند. اصولا در ساختمان این سیستم چند سنسور، به طور همزمان عمل می‌کنند و سپس پاسخ‌های دریافتی از آن‌ها به شبکه‌ عصبی ربات منتقل شده و تحلیل و پردازش لازم روی آن صورت می‌گیرد. نکته مهم درباره کار این سنسورها در این است که آن‌ها نمی‌توانند یک بو یا عطر را به طور مطلق انداره‌ بگیرند. بلکه با اندازه‌گیری اختلاف بین آن‌ها به تشخیص بو می‌پردازند.

 

f.سنسورهای موقعیت مفاصل : رایج‌ترین نوع این سنسورها کدگشاها )Encoders( هستند که هم از قدرت بالای تبادل اطلاعات با کامپیوتر برخوردارند و هم اینکه ساده، دقیق، مورد اعتماد و نویز ناپذیرند. این دسته انکدرها را به دو دسته می‌توان تقسیم کرد:

 

i.انکدرهای مطلق: در این کدگشا ها موقعیت به کد باینری یا کد خاکستری BCD Binary Codded Decibleتبدیل می‌شود. این انکدرها به علت سنگینی و گران‌قیمت بودن و اینکه سیگنال‌های زیادی را برای ارسال اطلاعات نیاز دارند، کاربرد وسیعی ندارند. همانطور که می‌دانیم به‌کار گیری تعداد زیادی سیگنال درصد خطای کار را افزایش می‌دهد و این اصلا مطلوب نیست. پس از این انکدرها فقط در مواردی که مطلق بودن مکان‌ها برای ما خیلی مهم است و مشکلی هم از احاظ بار فابل تحمل ربات متوجه ما نباشد، استفاده می‌شود.

 

ii.انکدرهای افزاینده: این کدگشا ها دارای قطار پالس و یک پالس مرجع که برای کالیبره کردن بکار می‌رود هستند، از روی شمارش قطارهای پالس نسبت به نقطه مرجع به موقعیت مورد نظر دست می‌یابند. از روی فرکانس (عرض پالس‌ها) می‌توان به سرعت چرخش و از روی محاسبه تغییرات فرکانس در واحد زمان (تغییرات عرض پالس) به شتاب حرکت دوارنی پی برد. حتی می‌توان جهت چرخش را نیز فهمید. فرض کنید سیگنال‌های A و B و C سه سیگنالی باشند که از کدگشا به کنترل‌کننده ارسال می‌شود. B سیگنالی است که با یک چهارم پریود تاخیر نسبت به A. از روی اختلاف فاز بین این دو می‌توان به جهت چرخش پی برد.

لینک به دیدگاه

سنسور مادن قرمز بدون حساسيت به نور محيط

 

این یک سنسور مادون قرمز که نسبت به نور روز حساسیت نداره و با استفاده از یک PLL کار می کنه!

 

و اما چه جوری کار می کنه این از یه IC استفاده میکنه که دارای یه اوسیلاتور که روی فرکانس KHz 4.5 تنظیم شده این فرکانس توسط یه فرستنده مادون قرمز فرستاده می شه و توسط گیرنده مربوطه گرفته شده و ولتاژ DC اون حذف می شه (که معمولا این ولتاژ متناسب با نور های محیطه) بعد توسط یه Phase Detector با فاز فرستنده مقایسه می شه و اگر برابر بود خروجی صفر می شه وجود یک PLL در مدار باعث می شه که حساسیت مدار به نور های پراکنده جلوگیری می کنه البته برای تنظیم حساسیت می تونین از پتانسیومتر مدار استفاده کنین

 

از این مدار می تونین هم برای تشخیص وجود یک مانع استفاده کنین و هم برای تشخیص رنگ سیاه از سفید. فرستنده و گیرنده مدار رو می تونین رو بروی هم قرار بدین که با این کار اگر مانعی در بین این دو باشه تشخیص داد می شه و هم می تونین هر دو رو کنار هم قرار بدین البته باید مراقب باشین که نور فرستنده در این حالت مستقیم به گیرنده نرسه و فقط انعکاس اون رو گیرنده در یافت کنه با این کار اگه مانعی رو نزدیک این دو قرار بدین تشخیص داده می شه این فاصله حدود 2 cm که بستگی به رنگ جسم و جنس فرستنده و گیرنده دارد البته می توان آن را با پتانسیومتر مدار کمتر کرد با همین روش می تونین رنگ سیاه رو از سفید تشخیص بدین البته تنظیم پتانسیومتر یادتون نره

 

حسن این مدار اینه که با کم و زیاد شدن نور تنظیماتتون بهم نمی خوره دیگه بعداز یک ساعت تنظیم بعد که وارد محیط مسابقه شدین که نور دیگه ای داره همه چیز بهم نمی خوره .

 

حسگرهای مافوق صوت

 

یكی از مسائل مطرح در رباتیك ایجاد درك نسبت به محیط خارجی برای جلوگیری از برخورد نامطلوب به اشیاء موجود در محیط حركت است.

 

از سوی دیگر ممكن است نیاز داشته باشیم كه ربات بتواند دركی از فاصله ها بدون تماس فیزیكی داشته باشد. برای این منظور از سنسورهای مافوق صوت یا Ultrasonic استفاده می كنند.فركانسهای این محدوده را می توان بین 40 كیلو هرتز تا چندین مگا هرتز در نظر گرفت.امواجی با این فركانسها كاربردهایی چون سنجش میزان فاصله،سنجش میزان عمق یك مخزن و ....را دارند.

 

جهت استفاده از این امواج یك سری سنسورهای مخصوص طراحی شده كه می توان این سنسورها را به دو دسته صنعتی و غیر صنعتی تقسیم بندی كرد.سنسورهای غیر صنعتی در فركانسهایی در حدود 40 كیلو هرتز كار می كنند و در بازار با قیمتهای پایین در دسترس هستند. در این سنسورها دقت كار بالا نبوده و فقط در حد تشخیص یك فاصله یا عمق یك مایع می توان از آنها استفاده كرد.اما بلعکس در سنسورهای صنعتی كه در فركانسهای در حد مگا هرتز كار می كنند و به دلیل همین فركانس بالا ما دقت زیادی را خواهیم داشت

 

مكانیزم كلی كار این سنسورها ، فرستادن یك بیم و دریافت انعكاس آن و متعاقبا محاسبه زمان رفت و برگشت است. بدین ترتیب می توان فواصل را نیز براحتی با در نظر گرفتن سرعت صوت در دما و فشار محیط ، محاسبه كرد به همین دلیل این سنسور به صورت دو pack مجزای گیرنده و فرستنده موجود می باشد.

لینک به دیدگاه

سنسور های اثر انگشت

 

تصدیق اثر انگشت به روش اتوماتیک مقایسه بین اثرانگشتهای مختلف اطلاق می شود. شناسایی با اثر انگشت یکی از روشهای بایومتریک Biometric شناسایی افراد است. بنابه تقاضای یکی از دوستان خواننده ، در این پست بطور خلاصه درباره ی این حسگرها مطالبی را ارائه می کنم.

 

یک حسگر اثرانگشت قطعه ای الکترونیکی است که تصویری دیجیتالی را از اثر انگشت می گیرد. این تصویر گرفته شده "مرور زنده" یا Live Scan نامیده می شود. این تصویر سپس بطور دیجیتالی پردازش می شود تا یک الگوی بایومتریک را برای ذخیره و انطباق آتی ایجاد نماید.

 

معروفترین حسگرهای اثر انگشت ، حسگرهای نوری (مرئی) – که شبیه یک دوربین فیلم برداری عمل می کنند–،آلتراسونیک – که بر پایه آلتراسونوگرافی پزشکی کار میکنند – و خازنی (پسیو و اکتیو) هستند.

 

برای تطبیق تصویر گرفته شده با تصاویر موجود در حافظه از الگوریتمهای انطباقی نظیر PBAیا IBA (بترتیب یعنی الگوریتم بر مبنای الگوی اثرانگشت Pattern-Based-Algorithm والگوریتم بر مبنای تصویر انگشتImage-Based-Algorithm ) و الگوریتم پیچیده تری بنام MBA الگوریتم اجزای ناچیزیا Minutia-Based-Algorithm استفاده میشود.

 

در الگوریتم PBA طرح اثرانگشت شامل خم، پیچش و حلقه با نمونه های حافظه مقایسه میشود. برای این منظورباید تصاویر در یک جهت معین قرار گیرند که الگوریتم نقطه مرکزی را در تصویر اثر انگشت یافته و آنرا با اثر انگشت ورودی هم مرکز میکند. هر الگو در این الگوریتم شامل نوع، اندازه و جهت طرحواره های تصویر تراز شده اثر انگشت است.

 

در الگوریتم MBA چندین قسمت مختلف از اجزای اثرانگشت موجود در حافظه نظیر لبه های انتهایی هر خط موجود در اثر انگشت، انشعابات در خطوط و شیارهای کوتاه بین خطوط با اثر انگشت ورودی مقایسه می شوند. این روش همچنین مانند روش قبلی نیاز به تصویری تراز شده از اثر انگشت دارد. تفاوت در این روش این است که بجای انطباق مراکز از یک قاب مرجع Reference Frame استفاده میشود. هر نقطه اجزای اثرانگشت در این الگوریتم بصورت یک بردار در طرحواره اثرانگشت ذخیره می شود.

 

کمپانی های لیدر در سنسورهای اثر انگشت فوجیتسو Fujitsu آوتن Authen و اتمل Atmel هستند. یک سنسور اثرانگشت MBF200 فوجیتسو شامل یک سنسور 500 دی پی آی )Dot Per Inches( هشت بیتی خازنی است. این مجموعه بصورت دوبعدی شامل 256 ردیف 300 پیکسلی است که بصورت تکنولوژی CMOS استاندارد ساخته شده اند. کل سطح سنسور ابعادی بطول 15 و عرض 12.8 میلیمتر را شامل میشود. هر پیکسل از یک الکترود فلزی ساخته شده که بصورت یک صفحه خازن عمل میکند. تماس انگشت با سطح سنسور صفحه دوم خازن را ایجاد میکند. لایه پسیویشن Passivation Layer روی سطح قطعه ، لایه دی الکتریکی بین انگشت و پیکسلها می سازد و محل سایش انگشت و مقاومت شیمیایی را بوجود می آورد. تصویر اثرانگشت با محاسبه ظرفیت خازنی هر پیکسل وتبدیل دیتا به یک تصویر 8 بیتی سیاه و سفید ایجاد می گردد. شکل زیر بلوک دیاگرام این سنسور را نشان می دهد. برای مشاهده ی بهتر تصویر آنرا Save کنید.قلب و هسته ی اصلی یک سیستم تشخیص اثر انگشت بخش پردازش سیگنال دیجیتال است که بر مبنای الگوریتمهای مختلف اثر انگشت موجود را با مدلهایی که در حافظه دارد مطابقت می دهد.

لینک به دیدگاه

سنسور های دما

اندازه گیریهای متعددی در ارتباط با انرژی حرارتی سیستم بیولوژیک قابل انجام است.اینها شامل دما،هدایت گرمایی و تشعشع گرمایی هستند.از بین اینها، اندازه گیری دما به طور معمول انجام می شود. دما متغییری فیزیولوژیک است که کیلینیکی اهمیت دارد و یکی از 4 علامت حیاتی اساسی است که در تشخیص کلینیکی بیماران مورد استفاده قرار می گیرد.سنسور، مهم ترین جزء یک سیستم اندازه گیری دما است. در واقع یک ابزار دقیق اندازه گیری دما، دمای سنسور را نشان می دهد از این رو، مشکل موجود در اندازه گیریهای پزشکی دما، نگهداشتن سنسور دما دردمای فیزیولوژیکی مورد اندازه گیری است. آسان ترین راه انجام این کار نگهداشتن سنسور دما در تماس مستقیم با ساختاری است که دمایش اندازه گیری می شود. با این حال، این به تنهایی کافی نیست چرا که سنسور دما ممکن است دمای بافت در تماس با خود را تغییر دهد. مثلاً، چنانچه سنسور در ابتدا دمای کمتری نسبت به بافت اندازه گیری شونده داشته باشد زمانی که در تماس مستقیم با آن بافت قرار می گیرد، گرما از بافت به سنسور دما جریان می یابد. اگر انرژی گرمایی هدایت شده به داخل بافت یا انرژی گرمایی تولید شده به روش های متابولیک در بافت، نتوانند جای آن گرما را بگیرند، قرار دادن سنسور دما در تماس مستقیم با بافت آن را سرد می کند و در نتیجه دما غلط قرائت می شود به این دلیل، جرم مٶثر گرمایی سنسور دما همواره باید بسیار کمتر از جرم مٶثر گرمایی بافت مورد اندازه گیری باشد. از این گذشته، مهم است که مقاومت گرمایی بین سنسور واقعی و بافت مورد اندازه گیری حتی الامکان کم باشد.

 

سنسورهای معمول دما که در ابزارهای دقیق مهندسی پزشکی مورد استفاده اند عبارتند از:

1- ترمیستور 2- سنسورهای دمای مقاومت سیمی فلزی 3- ترموکوپل 4- نیمه هادی اتصالpn5- مواد حساس به دما مانند کریستال های مایع که خواص فیزیکیشان را دما تغییر می دهد. از بین این موارد، ترمیستور معمول ترین سنسور دما در اندازه گیری مهندسی پزشکی است. این سنسور از اکسیدهای فلزی نیمه هادی تشکیل یافته است که به اندازه ها و اشکال فیزیکی متنوعی درآورده می شوند. این اشکال از ترمیستورهای قیطانی خیلی کوچک که کروی هستند و قطرهایی به کوچکی mm1 دارند، گرفته تا دیسک های مسطح بزرگی که دارای قطر چند سانتی متر است، تنوع دارند.الکترودها و سیم های رابط، تماس الکتریکی با ماده ترمیستور را فراهم می نمایند و مقاومت الکتریکی ترمیستور از طریق این تماس ها اندازه گیری می شود. مقاومت الکتریکی مواد نیمه هادی با افزایش دما کاهش می یابد. مواد ترمیستوری را طوری ساخته اند که تغییر در مقاومت در محدوده دمایی موردنظر به حداکثر برسد و در همان حال حد بالایی از پایداری الکتریکی داشته باشند تا از تغییرات مقاومت در اثر دیگر منابع، یا به طور ساده با کهنه شدن خود ماده، جلوگیری شود. رسیدن به چنین خواصی، ساده نیست و از این رو فرمولاسیون واقعی مواد مختلف ترمیستوری که توسط تولیدکنندگان مختلف مورد استفاده قرار می گیرد و همچنین فرایندی که جهت پایدار نمودن خواص الکتریکی آنها استفاده می شود به دقت سری نگه داشته می شود .دماسنج الکترونیکی کلینیکی مثالی از یک ابزار دقیق اندازه گیری دما مبتنی بر ترمیستور است. سنسور این ابزار دقیق از یک پروب تشکیل شده که یک ترمیستور دارد. طراحی این پروب، عامل مهمی در عملکرد کل ابزار است. جرم پروب و ترمیستور باید کم باشد تا پاسخ زمانی سریعی بدهد، در عین اینکه پروب باید محکم باشد تا قدرت تحمل استفاده مکرر را داشته باشد. بنابراین یک ترکیب مهندسی ضروری است چرا که این دو نیازمندی معمولاً با هم مخالف هستند. از این گذشته، چنانچه ابزار دقیق برای افراد مختلف بکار رود، تمیز کردن و استریلیزه نمودن پروب بعد از هر بار استفاده عملی نیست. پس یک پوشش حفاظتی استریلیزه و یکبار مصرف پروب را می پوشاند که برای استفاده هر بیمار عوض می شود. همچنین این پوشش باید جرم گرمایی کم و

 

هدایت گرمایی بالا داشته باشد تا از خراب شدن پاسخ زمانی ابزار جلوگیری نماید. همچنین باید محکم باشد تا گسیختگی که عملکرد آن را از بین می برد روی پروب قرار گیرد.

هدف مدار الکترونیک پردازش سیگنال در این ابزار دقیق تبدیل مقاومت الکتریکی ترمیستور به ولتاژ مرتبط با دمای آن و آماده سازی این ولتاژ برای وسیله قرائت که معمولاً یک صفحه دیجیتالی نمایش دهنده دما است، می باشد. یک مدار پل و تستون نامتعادل که یک ضلع آن را ترمیستور تشکیل می دهد، این هدف را محقق می کند. چنانچه چنانچه پل به طور مناسب طراحی گردد، غیرخطی بودن ولتاژ خروجی پل و تستون به عنوان تابعی از مقاومت می تواند غیرخطی بودن ترمیستور را در یک محدوده دمایی معین(حداکثر تا 40 درجه سانتی گراد) جبران کند، طوری که ولتاژ خروجی پل رابطه خطی با دما داشته باشد. بقیه مدار الکترونیکی باید این سیگنال را طوری مقیاس دهی کند که خروجی دستگاه عدد صحیح را که با دمای مورد اندازه گیری مطابق است نشان دهد .کارایی دیگری که در بعضی دماسنجهای الکترونیکی هست، مداری است که نشان می دهد چه زمان سنسور دما به تعادل رسیده است تا دما خوانده شود. چنین مداری هر ثانیه دما را بررسی می کند و قرائت نهایی را با چند تای قبلی مقایسه می کند. اگر اختلافها کمتر از 1/0 سانتی گراد باشد، دما ثابت درنظر گرفته می شود و به اپراتور گفته می شود که می تواند دما را بخواند، این کار معمولاً با یک بوق کوتاه انجام می شود.دیگر ابزارهای دقیق دما که قبلاً ذکر شد همگی براساس همین نوع ابزار دقیق هستند، چون اندازه گیری رسانایی گرمایی، شار گرمایی و تشعشع شامل انجام اندازه گیری اهی دمایی است. این سیگنال را طوری پردازش می کنند که کمیت موردنظر را براساس طرح سنسور ارائه دهد.اندازه گیریهای متعددی در ارتباط با انرژی حرارتی سیستم بیولوژیک قابل انجام است.اینها شامل دما،هدایت گرمایی و تشعشع گرمایی هستند.از بین اینها، اندازه گیری دما به طور معمول انجام می شود. دما متغییری فیزیولوژیک است که کیلینیکی اهمیت دارد و یکی از 4 علامت حیاتی اساسی است که در تشخیص کلینیکی بیماران مورد استفاده قرار می گیرد .سنسور، مهم ترین جزء یک سیستم اندازه گیری دما است. در واقع یک ابزار دقیق اندازه گیری دما، دمای سنسور را نشان می دهد از این رو، مشکل موجود در اندازه گیریهای پزشکی دما، نگهداشتن سنسور دما دردمای فیزیولوژیکی مورد اندازه گیری است. آسان ترین راه انجام این کار نگهداشتن سنسور دما در تماس مستقیم با ساختاری است که دمایش اندازه گیری می شود. با این حال، این به تنهایی کافی نیست چرا که سنسور دما ممکن است دمای بافت در تماس با خود را تغییر دهد. مثلاً، چنانچه سنسور در ابتدا دمای کمتری نسبت به بافت اندازه گیری شونده داشته باشد زمانی که در تماس مستقیم با آن بافت قرار می گیرد، گرما از بافت به سنسور دما جریان می یابد. اگر انرژی گرمایی هدایت شده به داخل بافت یا انرژی گرمایی تولید شده به روش های متابولیک در بافت، نتوانند جای آن گرما را بگیرند، قرار دادن سنسور دما در تماس مستقیم با بافت آن را سرد می کند و در نتیجه دما غلط قرائت می شود به این دلیل، جرم مٶثر گرمایی سنسور دما همواره باید بسیار کمتر از جرم مٶثر گرمایی بافت مورد اندازه گیری باشد. از این گذشته، مهم است که مقاومت گرمایی بین سنسور واقعی و بافت مورد اندازه گیری حتی الامکان کم باشد.

 

سنسورهای معمول دما که در ابزارهای دقیق مهندسی پزشکی مورد استفاده اند عبارتند از:

1- ترمیستور 2- سنسورهای دمای مقاومت سیمی فلزی 3- ترموکوپل 4- نیمه هادی اتصالpn5- مواد حساس به دما مانند کریستال های مایع که خواص فیزیکیشان را دما تغییر می دهد. از بین این موارد، ترمیستور معمول ترین سنسور دما در اندازه گیری مهندسی پزشکی است. این سنسور از اکسیدهای فلزی نیمه هادی تشکیل یافته است که به اندازه ها و اشکال فیزیکی متنوعی درآورده می شوند. این اشکال از ترمیستورهای قیطانی خیلی کوچک که کروی هستند و قطرهایی به کوچکی mm1 دارند، گرفته تا دیسک های مسطح بزرگی که دارای قطر چند سانتی متر است، تنوع دارند.الکترودها و سیم های رابط، تماس الکتریکی با ماده ترمیستور را فراهم می نمایند و مقاومت الکتریکی ترمیستور از طریق این تماس ها اندازه گیری می شود. مقاومت الکتریکی مواد نیمه هادی با افزایش دما کاهش می یابد. مواد ترمیستوری را طوری ساخته اند که تغییر در مقاومت در محدوده دمایی موردنظر به حداکثر برسد و در همان حال حد بالایی از پایداری الکتریکی داشته باشند تا از تغییرات مقاومت در اثر دیگر منابع، یا به طور ساده با کهنه شدن خود ماده، جلوگیری شود. رسیدن به چنین خواصی، ساده نیست و از این رو فرمولاسیون واقعی مواد مختلف ترمیستوری که توسط تولیدکنندگان مختلف مورد استفاده قرار می گیرد و همچنین فرایندی که جهت پایدار نمودن خواص الکتریکی آنها استفاده می شود به دقت سرّی نگه داشته می شوند.

دماسنج الکترونیکی کلینیکی مثالی از یک ابزار دقیق اندازه گیری دما مبتنی بر ترمیستور است. سنسور این ابزار دقیق از یک پروب تشکیل شده که یک ترمیستور دارد. طراحی این پروب، عامل مهمی در عملکرد کل ابزار است. جرم پروب و ترمیستور باید کم باشد تا پاسخ زمانی سریعی بدهد، در عین اینکه پروب باید محکم باشد تا قدرت تحمل استفاده مکرر را داشته باشد. بنابراین یک ترکیب مهندسی ضروری است چرا که این دو نیازمندی معمولاً با هم مخالف هستند. از این گذشته، چنانچه ابزار دقیق برای افراد مختلف بکار رود، تمیز کردن و استریلیزه نمودن پروب بعد از هر بار استفاده عملی نیست. پس یک پوشش حفاظتی استریلیزه و یکبار مصرف پروب را می پوشاند که برای استفاده هر بیمار عوض می شود. همچنین این پوشش باید جرم گرمایی کم و هدایت گرمایی بالا داشته باشد تا از خراب شدن پاسخ زمانی ابزار جلوگیری نماید. همچنین باید محکم باشد تا گسیختگی که عملکرد آن را از بین می برد روی پروب قرار گیرد.هدف مدار الکترونیک پردازش سیگنال در این ابزار دقیق تبدیل مقاومت الکتریکی ترمیستور به ولتاژ مرتبط با دمای آن و آماده سازی این ولتاژ برای وسیله قرائت که معمولاً یک صفحه دیجیتالی نمایش دهنده دما است، می باشد. یک مدار پل و تستون نامتعادل که یک ضلع آن را ترمیستور تشکیل می دهد، این هدف را محقق می کند. چنانچه چنانچه پل به طور مناسب طراحی گردد، غیرخطی بودن ولتاژ خروجی پل و تستون به عنوان تابعی از مقاومت می تواند غیرخطی بودن ترمیستور را در یک محدوده دمایی معین(حداکثر تا 40 درجه سانتی گراد) جبران کند، طوری که ولتاژ خروجی پل رابطه خطی با دما داشته باشد. بقیه مدار الکترونیکی باید این سیگنال را طوری مقیاس دهی کند که خروجی دستگاه عدد صحیح را که با دمای مورد اندازه گیری مطابق است نشان دهد.

کارایی دیگری که در بعضی دماسنجهای الکترونیکی هست، مداری است که نشان می دهد چه زمان سنسور دما به تعادل رسیده است تا دما خوانده شود. چنین مداری هر ثانیه دما را بررسی می کند و قرائت نهایی را با چند تای قبلی مقایسه می کند. اگر اختلافها کمتر از 1/0 سانتی گراد باشد، دما ثابت درنظر گرفته می شود و به اپراتور گفته می شود که می تواند دما را بخواند، این کار معمولاً با یک بوق کوتاه انجام می شود.

دیگر ابزارهای دقیق دما که قبلاً ذکر شد همگی براساس همین نوع ابزار دقیق هستند، چون اندازه گیری رسانایی گرمایی، شار گرمایی و تشعشع شامل انجام اندازه گیری اهی دمایی است. این سیگنال را طوری پردازش می کنند که کمیت موردنظر را براساس طرح سنسور ارائه دهد.

لینک به دیدگاه

توضیحات سنسورهای تشخیص گازونوع گاز:

 

MQ7_Sensor.jpg

از سری سنسور های تشخیص انواع گاز ، سنسور های سری MQ میباشد که کاربرد فراوانی دارند و با قیمت های متفاوتی و در مدل های مختلفی دربازار ایران

 

یافت میشود.

از نظر کارایی ونحوه استفاده نیز بسیار ساده میباشد اما تنها مشکل موجود در دانلود دیتا شیت های آن میباشد که براحتی یافت نمیشود. درا ین پست کاربرد

 

هریک از ان را برای شما اماده کرده ایم

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

همانطور که درشکل بالا میبنید یک هیتر برای گرم شدن سنسور هست که پایه vh مربوط به ان میباشد و باید به آن ولتاژ ۵ ولت وصل نمائید تا هیتر شما روشن

 

شود دراین صورت سنسور شما کمی گرم میشود که جای نگرانی نیستاما پایه دیگر vc نام دارد که به ان ولتاژ ۵ الی ۲۴ ولت وصل میشود البته در سنسور

 

های مختلف این ولتاژ تغییر میکند که با افزایش گاز میزان هدایت در سنسور افزایش یافته وولتاژ خروجی در پایه vrl تغییر میکند و با افزایش گاز ولتاژ خروجی نیز

 

افزایش پیدا میکند که با وصل ان به adc میکرو میتوان ولتاژ را اندازه گرفت و در هنگام افزایش گاز و افزایش ولتاژ خروجی ، دستگاه شما پردازش مورد نظر را انجام

 

دهد.

- همان طور که میدانید این سنسورها شمیایی هستند و برای فعال شدن آنها از یک هیتر داخلی استفاده شده پس توجه داشته باشید که هرچه این سنسور

 

مدت زمان بیشتری روشن باشد دقت و حساسیت آن بیشتر هست . در ابتدای اتصال این سنسورها به برق ولتاژ خروجی از ۵ ولت شروع به کم شدن می کنه و

 

نهایتا بهد از یک تایم حدود یک ساعت به یک سطح ولتاژ نسبتا ثابت می رسید حدود ۱.۲ تا ۲.۴ ولت که برای هرکدوم از سنسورها حتی با یک شماره هم این

 

مقدار متفاوت هست این کم شدن ولتاژ ادامه داره و بعد از ۲۴ ساعت روشن بودن مداوم تقریبا تغییری نداریم.فقط در بعضی موارد نادر باید توجه داشت که در

 

صورت استفاده از adc باید از این ولتاژ صرف نظر شود و در برنامه بعد از یک ساعت شروع به اندازه گیری کند و مقدار به دست اومده توسط adc با مقدار قبلی

 

مقایسه و در صورت کمتر بودن مقدار کمتر به عنوان مبنا انتخاب شود .عمر این سنسورها حدود ۵ سال است در صورت قرار نگرفتن در معرض گرد و خاک و رطوبت

 

. دما و رطوبت در میزان اندازه گیری اثر دارند همچنین میزان ریپل تغذیه .

 

من با تعداد زیادی از این سنسورها کار کردم و به این تجربه رسیدم که هنگام اتصال سنسور برای اولین بار بوی سوختن می دهد که ناشی از حرارت هیتر است

 

و چیز مهمی نیست.

لینک به دیدگاه

سنسورهای مادون قرمز: tsop series

tsop12xx:

 

ماژول های نوری،برای سیستم های کنترل ازراه دورpcm ارائه شده توسط شرکت temic درجدول زیرمدلهای دردسترس

 

برای فرکانسهاس حامل مختلف آمده است.

 

07952665804182327802.png

..................................
73608484565467025546.png

 

 

فرکانس درج شده درمقاببل هرکدام ازسنسورهافرکانس حاملی است که اگرسنسورآن رادریافت کندخروجی اش

low خواهدشد(توجه داشته باشیدکه خروجی تمام این سنسورهاصفرفعال است)به عنوان مثال فرکانس حامل

سنسورtsop1238طبق جدولبرابر38khzاست.یعنی اگراین سنسورفرکانسی برابر38khzرادریافت کندخروجی آن ازحالت

highبه حالت low تغییروضعیت خواهدداد.

دورقم آخرشماره سنسورمشخص کننده ی فرکانس حامل سنسوربرحسب khzاست.به عنوان مثال فرکانس حامل سنسوربه

شماره یtsop1230برابردورقمآخرآن یعنی 30khzاست.

مشخصات:

1.مجهزبه آشکارسازی نوری ومدارپری آمپلی فایرداخلی

2 .مهزبه *****داخلی برای محدوده فرکانسیpcm

3.حفاظت شده دربرابرمیدانهای الکتریکی مزاحم

4.سازگاری با cmos وttl

5.خروجی active low

6.توان مصرفی پائین

7.امکان فرستادن اطلاعات تا1200 bit/ps(بیت برثانیه)

8.مصونیت بالادربرابرانواع نورهای مزاحم

9.رخ ندادن پالسهای مزاحم درخروجی

 

بلوک دیاگرام داخلی سنسوروجدول مشخصات:

 

 

79289818545685303042.png

 

 

 

46154055406963178909.png

 

 

 

98718706245558724502.png

 

لینک به دیدگاه

PIR سنسور تشخيص حرکت:

 

PASSIVE INFRA RED نام اين سنسور از سر کلمه های

برای تشخيص حرکت PIR گرفته شده است . سنسورهای

موجودات زنده به کار می رود ( انسان و حيوانات ) . اين سنسور

معمولا با نام چشمی شناخته می شود .

10969584424799261763.png

 

ساختار پايه ای :

20953009151433240959.png

همان طور که در شکل مشاهده می کنيد ، پايهء

شمارهء 1 ، تغذيهء سنسور می باشد که با يک

مقاومت 10 کيلو اهم به تغذيهء مثبت وصل می شود .

پايهء شمارهء 2 خروجی سنسور می باشد که بايد

توسط يک مقاومت 100 کيلو اهم آنرا به زمين

نمود . پايه شمارهء 3 هم زمين می باشد .

 

خصوصيات سنسور :

 

محدودهء دمايي که سنسور می تواند در آن کار کند 30 - الی 70 + می باشد .

محدودهء ولتاژ تغذيه هم بين 5 تا 12 ولت است ( برخی که به صورت آماده ساخته می

شوند ، محدودهء تغذيه از 3.5 ولت شروع می شود ) .

زاويهء ديد ( زاويهء مورد حس ) توسط سنسور 95 درجه می باشد .

 

69275008148338254571.png

 

جريان مصرفی در محدودهء ميکروآمپر است ( حدود 50 ميکرو آمپر ) .

 

 

روش کار سنسور :

 

اصول کاری اين سنسور و آشکارسازی حرکت آن بر اساس انرژی گرمايي دريافتی از

محيط می باشد و اثر پيرو الکتريکی می باشد . درون اين سنسور کريستالهايي به کار

برده شده اند که اين خاصيت را دارند .

اثر پيرو الکتريک در عناصری وجود دارد که در معرض تغييرات گرمايي ، ولتاژی را

توليد کنند . در شکل زير نمای درونی اين سنسور آمده است :

63178551198700248515.png

از يک ف.یلتر پائين گذر در DC برای داشتن ولتاژ تا حد ممکن ثابت و

خروجی استفاده می شود :

64528125614314011029.png

به علت اينکه امواج حرارتی دريافتی از فاصلهء دور بسيار ضعيف است ، از يک لنز

استفاده می شود . وظيفهء اين لنز متمرکز کردن امواج FRESNEL يا عدسی با نام

دريافتی در مرکز سنسور است ( همانند عملکرد ديش در ماهواره ها ) . همچنين اين لنز

می تواند به صورت ف.یلتر هم عمل کند و امواج مزاحم را حذف کند .

اين لنز يا عدسی بايد نصب شود ( البته به صورت صحيح ) تا بتوان خروجی قابل قبولی

را داشت . فاصله لنز تا سنسور حدود 0.65 اينچ می باشد . اين نوع لنز دارای شيارهايي

بر روی خود است که برای هر چه بهتر متمرکز کردن سيگنالهای دريافتی می باشد .

به علت اينکه اين سنسور بر اساس گرما کار می کند ، در ديگر مصارفی که گرما در آن

نقش دارد نيز می توان به کار برده شود .

90199103330943707432.png

لینک به دیدگاه

آشکار سازی حرکت (pir)

در حالتی که می خواهيم سنسور برای آشکار سازی حرکت استفاده شود ، بايد سنسور

طوری نصب شود که پايه های 1 و 3 به صورت افقی قرار بگيرند .

13019660308953738500.png

در اين حالت تشخيص حرکت به صورت زير می باشد :

13141744850827817118.png

اگر سيگنالهای گرمايي دريافتی به صورت باشد ،

55846657132245329832.png

آنگاه خروجی سنسور به صورت می باشد .

86818863552571536864.png

به دست آوردن خروجی آشکار شده :

برای داشتن خروجی ، بايد از دو طبقه تقويت کننده و مقايسه کننده استفاده کرد که خروجی

سنسور به آنها متصل می شود . سپس بعد از اين دو طبقه می توان خروجی آشکار شدهء

سنسور را به دست آورد .

35400348224590665905.png

 

شماتيک مدار تقويت و مقايسه :

93244496149351983766.png

LM های به کار برده شده ، در يک آی سي هستند با شمارهء 324 Op-Amp 4 عدد

خروجی را هم بعد از رله می توان دريافت کرد . همچنين می توان در خروجی از رله

را همراه با مقاومت 330 اهم ، به صورت سری با LED استفاده نکرد و به جای آن يک

پايهء 6 از آی سی اتصال داد که وضعيت خروجی را نشان دهد .

با توجه به مطالب گفته شده ، سختی راه اندازی اين سنسور به صورت دقيق و مناسب و

قيمت مناسب نوع آماده و کامل آن ، امروزه تمامی اين مدارات و لنز مورد نياز +

سنسور در يک بسته بندی ساخته می شود . در ادامه هم به توضيح همين گونه می

پردازيم .

اين مدارات عموما در شکل های زير توليد می شوند :

84151171090816241436.png12358652486740826702.png85597610849408008955.png41664002063078103005.png42362647169702418936.png

در اين نوع ساخت هم پس از مشاهدهء حرکت ، چراغ درونی روشن می شود و هم

اينکه می توان توسط خروجی زنگ اخطاری و يا دزدگيری را راه اندازی کرد .

به صورت ساده دارای سه پايه می باشند . دو پايه برای تغذيه و پايهء ديگر همان

خروجی سنسور . البته در نوع 6 پايه هم وجود دارد که عموما هر 2 پايه به هم

وصل هستند و همان 3 پايه می شود .

لینک به دیدگاه

برخی توضيحات جانبی (pir)

اين توضيخات برای نوع مقابل ذکر می شود .
42362647169702418936.png

 

در اينگونه سنسور ، وقتی سنسور حرکتی را مشخص کند ( جسم

حرارتی در سيستم قرار گرفته باشد ، خواه انسان يا ... ) ، خروجی سنسور فعال

می شود و حدودا 3 ولت می شود . البته اين ولتاژ ممکن است برای هر مدل فرق

داشته باشد که در ديتا شيت های مربوطه ميتوان مقدار آنرا به دست آورد . اما

وقتی که هيچگونه حرکت گرمايي مشخص نشود ، خروجی سنسور در حالت غير

فعال است ( صفر ولت ) .

61536097349187858757.png

 

 

اتصال سنسور :

به دليل اينکه خروجی سنسور قابليت جريان دهی بالايي را ندارد ، بنابراين بايد در

خروجی از تقويت کننده استفاده کرد . در شکل زير نحوهء اتصال سنسور برای راه

اندازی يک لامپ که توسط برق شهر تغذيه شده است ، آمده است :

72957246884454805306.png

همان طور که مشاهده می شود ، خروجی سنسور توسط ترانزيستور تقويت می شود و

سپس جهت فعال سازی به بوبين رله اعمال می شود . هر گاه حرکتی آشکار شد ،

خروجی سنسور فعال شده و رله وصل می شود و لامپ روشن می شود .

 

اتصال سنسور به ميکروکنترلر :

 

همان طور که گفته شد ، برای مدل گفته شده ، خروجی در حالت فعال حدود 3 ولت می

شود . بنابراين می توان به صورت مستقيم به ميکروکنترلر وصل شود . حال می توان با

چک کردن پايه ای که خروجی سنسور به آن وصل است ، عمليان متناسب با تشخيص

حرکت در سيستم را انجام داد . همچنين می توان از وقفهء خارجی نيز استفاده کرد .

14801168394111080162.png

 

لینک به دیدگاه

سنسورهای القائی

سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی *مانند: PLC *ارسال نمایند.

اساس کار و ساختمان سنسورهای القائی:

ساختمان این سنسورها از چهار طبقه تشکیل می شود: اسیلاتور، دمدولاتور، اشمیت تریگر، تقویت خروجی. قسمت اساسی این سنسورها از یک اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاثیر قرار گیرد. این اسیلاتور باعث بوجود آمدن میدان الکترومغناطیسی در قسمت حساس سنسور می شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد. از آنجا که طبقه دمدلاتور، آشکارساز دامنه اسیلاتور است در نتیجه کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود. کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود.

 

قطعه استاندارد:

یک قطعه مربعی شکل از فولاد ST37 است که از آن بمنظور تست فاصله سوئیچینگ استفاده می شود. استاندارد IEC947-5-2 ضخامت قطعه 1mmو طول ضلع این مربع در اندازه های زیر می تواند انتخاب شود:

- به اندازه قطر سنسور

- سه برابر فاصله سوئیچینگ نامی سنسور 3*Sn

ضرایب تصحیح:

فاصله سوئیچینگ با کوچکتر شدن ابعاد قطعه استاندارد و یا با بکارگیری فلز دیگری غیر از فولاد ST37 تغییر خواهد کرد. در جدول زیر ضرایب تصحیح برای فلزات مختلف نشان داده شده است.

ضریب تصحیح (KM) برای فولاد ST37 برابر 1.0

ضریب تصحیح (KM) برای نیکل برابر 0.9

ضریب تصحیح (KM) برای برنج برابر 0.5

ضریب تصحیح (KM) برای مس برابر 0.45

ضریب تصحیح (KM) برای آلومینیوم برابر 0.4

بعنوان مثال هرگاه یک سنسور در مقابل فولاد از فاصله 10mm عمل سوئیچینگ را انجام دهد، همان سنسور در مقابل مس از فاصله 4.5mm عمل خواهد کرد.

فرکانس سوئیچینگ:

حداکثر تعداد قطع و وصل یک سنسور در یک ثانیه می باشد. بر حسب Hz این پارامتر طبق استاندارد DIN EN 50010 با شرایط زیر اندازه گرفته می شود:

 

فاصله سوئیچینگ S(Switching Distance):

 

فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد.**استاندارد EN 50010**

 

فاصله سوئیچینگ نامی Sn(Nominal Switching Distance):

 

فاصله ای است که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل حرارت، ولتاژ تغذیه وغیره تعریف شده است.

 

فاصله سوئیچینگ موثر Sr (Effective Switching Distance):

 

فاصله سوئیچینگ تحت شرایط ولتاژ نامی و حرارت 20 درجه سلسیوس می باشد. در این حالت تلرانسها و پارامترهای متغیر نیز در نظر گرفته شده اند. 0.9Sn

 

فاصله سوئیچینگ مفید Su (Useful Switching Distance):

فاصله ای است که در محدوده حرارت و ولتاژ مجاز، عمل سوئیچینگ انجام می شود. 0.81Sn

 

فاصله سوئیچینگ عملیاتی Sa (Operating Switching Distance):

 

فاصله ای است که تحت شرایط مجاز، عملکرد سنسور تضمین شده است. 0

 

هیسترزیس H:

فاصله بین نقطه وصل شدن (هنگام نزدیک شدن قطعه به سنسور) و نقطه قطع شدن (هنگام دورشدن قطعه از سنسور) می باشد. حداکثر این مقدار 10% مقدار نامی می باشد.

**استاندارد EN 60947-5-2**

 

قابلیت تکرارR (Repeatability):

قابلیت تکرار فاصله سوئیچینگ مفید تحت ولتاژ تغذیه V و در شرایط زیر اندازه گیری می شود: حرارت محیط: 23 درجه سلسیوس؛ رطوبت محیط: 50 الی 70 درصد؛ زمان تست: 8 ساعت. (مقدار تلرانس برای این پارامتر طبق استاندارد EN 60947-5-2 حداکثر +-0.1Sr می باشد.(

 

پایداری حرارتی (Temperature Drift):

 

تغییرات فاصله موثر سوئیچینگ در اثر تغییرات دما طبق استاندارد EN 60947-5-2 و در محدوده دمای 20 درجه سلسیوس زیر صفر تا 60 درجه سلسیوس بالای صفر حداکثر 10% است.

حرارت محیطTa (Ambient Temperature): محدوده حرارتی است که در آن محدوده، عملکرد سنسور تضمین شده است.

 

کلاس حفاظتی: IP67 (DIN 40050).

نحوه نصب سنسورهای القائی:هرگاه دو یا چند سنسور القائی در مجاورت هم و یا در مقابل هم نصب شوند، شرایط زیر باید رعایت شود:الف) نحوه نصب سنسورهای القائی Flush:

سنسورهای (Flush (Shielded سنسورهائی هستند که قسمت حساس سنسور توسط پوسته فلزی محصور شده است. هرگاه دو یا چند عدد از این سنسورها همسطح روی بدنه فلزی دستگاه نصب شوند رعایت فواصل نصب الزامی می باشد.ب) نحوه نصب سنسورهای القائی Non-Flush:

در سنسورهای (Non-Flush (UnShielded قسمت حساس سنسور خارج از پوسته فلزی آن می باشد. فاصله سوئیچینگ این نوع سنسورها بیشتر از سنسورهایFlush می باشد. اما فرکانس سوئیچینگ آن در مقایسه کمتر است.ج) نحوه نصب سنسورهای القائی در مقابل هم:

هر گاه دو سنسور القائی در مقابل هم نصب شوند رعایت فاصله حداقل 6Sn الزامی باشد

لینک به دیدگاه

حس گرهاي تماسي ( Contact ):

مهمترين كاربردهاي اين حسگرها به اين شرح مي باشد:

1– آشكارسازي تماس دو جسم

2 – اندازه گيري نيروها و گشتاورهايي كه حين حركت ربات بين اجزاي مختلف آن ايجاد مي شود .

در شكل يك ميكرو سوئيچ يا حسگر تماسي نشان داده شده است. در صورت برخورد تيغه فلزي به مانع و فشرده شدن كليد زير تيغه همانند قطع و وصل شدن يك كليد، ولتاژ خروجي سوئيچ تغيير مي كند.

image004.jpg

حس گرهاي هم جواري (Proximity ):

آشكارسازي اشيا نزديك به روبات مهمترين كاربرد اين سنسورها مي باشد. انواع مختلفي از سنسورهای هم جواري نظیر: القايي، اثرهال، خازني ، اولتراسونيك ، نوري ممکن است در رباتها مورد استفاده قرار گیرند.

image005.jpg

سنسور اثر هال

حسگرهاي دوربرد ( Far away):

كاربرد اصلي اين حسگرها به شرح زير مي باشد:

1– فاصله سنج (ليزو و اولتراسونيك)

2– بينايي (دوربينCCD)

در شكل يك زوج گيرنده و فرستنده اولتراسونيك (ماوراء صوت) نشان داده شده است. اساس كار اين حسگرها بر مبناي پديده داپلر مي باشد.

image001.jpg

سنسورهای اولتراسونیک

حسگر نوري (گيرنده - فرستنده):

يكي از پركاربردترين حسگرهاي مورد استفاده در ساخت رباتها حسگرهاي نوري هستند. حسگر نوري گيرنده- فرستنده از يك ديود نوراني (فرستنده) و يك ترانزيستور نوري (گيرنده) تشكيل شده است.

خروجي اين حسگر در صورتيكه مقابل سطح سفيد قرار بگيرد 5 ولت و در صورتي كه در مقابل يك سطح تيره قرار گيرد صفر ولت مي باشد. البته اين وضعيت مي تواند در مدلهاي مختلف حسگر برعكس باشد. در هر حال اين حسگر در مواجهه با دو سطح نوري مختلف ولتاژ متفاوتي توليد مي كند.

image006.jpg

سنسور زوج نوری

در زير يك نمونه مدار راه انداز زوج حسگر نوري گيرنده فرستنده نشان داده شده است. مقادير مقاوتهاي نشان داده شده در مدلهاي متفاوت متغيير است و با مطالعه ديتا شيت آنها مي توان مقدار بهينه مقاومت را بدست آورد.

image007.jpg

لینک به دیدگاه

بيو سنسور چیست؟

 

سنسورهاي زيستي يا Biosensor براي ثبت و دريافت ترکیبی از اجزای زمین با مولفه فیزیکوشیمیایی و آشکارساز اون استفاده ميشه. مثلا سنسورهاي گاز مثلAlcohol Gas Sensor MQ-3 و Carbon Monoxide Sensor - MQ-7 و LPG Gas Sensor - MQ-6 و Methane CNG Gas Sensor - MQ-4 و يا سنسورهاي اثر انگشت(Fingerprint Scanner ) و اساسا 1سيستم بيو سنسور از 3 قسمت تشكيل ميشه

1)سنسورهاي دريافت عنصر حساس بیولوژیکی (ماده بیولوژیکی (به عنوان مثال بافت ، میکروارگانیسم ، گیرنده های سلولی ، آنزیمها ، آنتی بادی ، اسیدهای نوکلئیک ، مواد بیولوژیک مشتق شده و یا biomimic و غيره

 

2) سنسورهاي مبدل یا عنصر ردیاب آثار در مبحث فیزیکوشیمیایی ؛ نوری ، فیزوالکتریک ، الکتروشیمیایی و غیره)

 

3) پردازنده های سیگنال که عمدتا مسئول برای نمایش نتایج و انجام محاسبات هستند

بیوسنسورها طی سالهای اخیر مورد توجه بسیاری از مراکز تحقیقاتی قرار گرفته است. بیوسنسورها یا سنسورهای بر پایه مواد بیولوژیکی اکنون گستره ی وسیعی از کاربردها نظیر صنایع دارویی، صنایع خوراکی، علوم محیطی، صنایع نظامی بخصوص شاخه Biowar و ... را شامل میشود.

 

توسعه بیوسنسورها از 1950 با ساخت الکترود اکسیژن توسط لی لند کلارک در سین سیناتی آمریکا برای اندازه گیری غلظت اکسیژن حل شده در خون آغاز شد. این سنسور همچنین بنام سازنده ی آن گاهی الکترود کلارک نیز خوانده میشود. بعداً با پوشاندن سطح الکترود با آنزیمی که به اکسیده شدن گلوکز کمک میکرد از این سنسور برای اندازه گیری قند خون استفاده شد. بطور مشابه با پوشاندن الکترود توسط آنزیمی که قابلیت تبدیل اوره به کربنات آمونیوم را داراست در کنار الکترودی از جنس یون NH4++ بیو سنسوری ساخته شده که میتوانست میزان اوره در خون یا ادرار را اندازه گیری کند. هر کدام از این دو بیوسنسور اولیه از ترنسدیوسر متفاوتی در بخش تبدیل سیگنال خویش استفاده میکردند. در نوع اول میزان قند خون با اندازه گیری جریان الکتریکی تولید شده اندازه گیری میشد (آمپرومتریک) در حالیکه در سنسور اوره اندازه گیری غلظت اوره بر اساس میزان بار الکتریکی ایجاد شده در الکترودهای سنسور صورت می پذیرفت (پتنشیومتریک Potentiometric).

 

ممکن است روزی فرا رسد که بیمار بدون نیاز به مراجعه به پزشک و تنها بر مبنای اطلاعاتی که توسط یک COBD یا Chip-on-Board-Doctor فراهم میشود نوع بیماری تشخیص داده شده و سپس داروهای مورد نیاز مستقیماً درون خون تزریق شود. این مسئله باعث خواهد شد که دوز مصرفی دارو بسیار پایین آمده و ضمناً از میزان اثرات جانبی دارو Side-Effect بطرز فاحشی کاسته شود، چرا که دارو مستقیماً به محل مورد نیاز در بدن ارسال میشود.

 

کاری که یک بیوسنسور انجام میدهد تبدیل پاسخ بیولوژیکی به یک سیگنال الکتریکی است و شامل دو جزء اصلی: پذیرنده Receptor و آشکارکننده Detector است. قابلیت انتخابگری یک بیوسنسور توسط بخش پذیرنده تعیین میشود. آنزیمها، آنتی بادی ها، و لایه های لیپید (چربی) مثالهای خوبی برای Receptor هستند.

 

وظیفه دتکتور تبدیل تغییرات فیزیکی یا شیمیایی با تشخیص ماده مورد تجزیه (Analyte) به یک سیگنال الکتریکی است. کاملاً واضح است که دتکتورها قابلیت انتخاب در نوع واکنش صورت گرفته را ندارند. انواع دتکتورهای (یا ترانسدیوسرها یا مبدلها یا آشکارسازها) مورد استفاده در بیوسنسورها شامل: الکتروشیمیایی، نوری، پیزوالکتریک و حرارتی میباشند. در نوع الکتروشیمیای عمل تبدیل به یکی از صورتهای: آمپرومتریک، پتانشیومتریک، و امپدانسی صورت میپذیرد. متداولترین الکترودهای مورد استفاده در نوع پتانشیومتریک شامل: الکترود شیشه ای Glass Electrode، الکترود انتخابگر یونی Ion-Selective، و ترانزیستور اثرمیدان حساس یونی Ion-sensitive FET یا ISFET هستند.

 

بطورکلی یک بیوسنسور شامل یک سیستم بیولوژیکی ایستا Immobilized نظیر یک دسته سلول، یک آنزیم، و یا یک آنتی بادی و یک وسیله اندازه گیری است. در حضور مولکول معینی سیستم بیولوژیکی باعث تغییر خواص محیط اطراف میشود. وسیله اندازه گیری که به این تغییرات حساس است، سیگنالی متناسب با میزان و یا نوع تغییرات تولید میکند. این سیگنال را سپس میتوان به سیگنالی قابل فهم برای دستگاههای الکترونیکی تبدیل کرد.

 

مزایای بیوسنسورها بر سایر دستگاههای اندازه گیری موجود را میتوان بطور خلاصه[برای مشاهده لینک ها باید به خانواده بزرگ پرشین وی بپیوندید. ] بصورت زیر بیان کرد:

 

*

مولکولهای غیرقطبی زیادی در ارگانهای زنده شکل میگیرند که به بیشتر سیستمهای موجود اندازه گیری پاسخ نمی دهند. بیوسنسورها میتوانند این پاسخ را دریافت کنند.

*

مبنای کار آنها بر اساس سیستم بیولوژیکی ایستا Immobilized تعبیه شده در خود آنهاست، در نتیجه اثرات جانبی بر سایر بافتها ندارند.

*

کنترل پیوسته و بسیار سریع فعالیتهای متابولیسمی توسط این سنسورهای امکان پذیر است.

 

 

بيو سنسورها

سنسورهايي از نوع ذرات بيولوژيک

در سالهاي اخير كاربردهاي زيست‌ فناوري و پزشكي فناوري ميكرو ونانو (كه معمولا از آن به عنوان سيستم‌هاي ميكروي الكتريكي مكانيكي پزشكي يا زيست‌ فناوري‎(BioMEM) 1‏ نام برده مي‌شود) به‌صورت فزاينده‌اي رايج شده است و كاربردهاي وسيعي همچون تشخيص و درمان بيماري و مهندسي بافت پيدا كرده است. در حين اين كه تحقيقات و گسترش فعاليت در اين زمينه هم چنان به قوت خود باقي است، بعضي از اين كاربردها تجاري هم مي‌شود. در اين مقاله پيشرفت‌هاي اخير در اين زمينه را مرور كرده و خلاصه‌اي از جديدترين مطالب در حوزه ‏BioMEM ‎‏ را با تمركز روي تشخيص و حسگرها ارائه مي‌شود.‏

بيوسنسور‌ها

در كاربردهاي بسياري در پزشكي، تحليل محيطي و صنايع شيميائي نياز به روشهايي جهت حس كردن مولكولهاي زيستي كوچك وجود دارد. حس‌هاي بويايي و چشايي ما دقيقا همين كار را انجام مي‌دهد و سيستم ايمني بدن ميليونها نوع مولكول مختلف را شناسائي مي‌كند. شناسائي مولكولهاي كوچك تخصص بيومولكولها است، لذا اينها شيوه جديد و جذابي براي ساخت سنسورهاي خاص را پيش رو قرار مي‌دهد. دو مولفه اساسي در اين راستا وجود دارد. المان شناساگر و روش‌هايي براي فراخواني زماني كه المان شناساگر هدف خودش را پيدا مي‌كند. اغلب المان شناساگر تحت تاثير منبع زيست‌ فناوري تغيير نمي كند. مشكل اصلي در اين كار طراحي يك واسطه مناسب به يك وسيله بازخواني بزرگ است.

از آنتي بادي‌ها به صورت گسترده به عنوان بيوسنسور استفاده مي‌شود. آنتي بادي‌ها بيوسنسورهاي پيشتاز در طبيعت است، به همين دليل توسعه تستهاي تشخيصي با استفاده از آنتي باديها يكي از زمينه‌هاي بسيار موفق در بيوفناوري است. شايد آشناترين مثال تست ساده‌اي است كه براي تعيين گروه خوني استفاده مي‌شود.

بوسنسورهاي گلوكز از موفق ترين بيوسنسورهاي موجود در بازار است. بيماران مبتلا به ديابت نياز به شيوه‌هاي مرسوم جهت پايش سطح گلوكز خود دارد. سنسورهاي قابل كاشت و غير تهاجمي در حال توسعه است، اما در حال حاضر در دسترس‌ترين شيوه بيوسنسور دستي است كه يك قطره از خون را تحليل مي‌كند.

image008.jpg

تعريف ‏BioMEM

‏ از زمان آغاز سيستم‌هاي ‏MEM‏ در اوايل دهه 1970، اهميت كاربردهاي پزشكي اين سيستم‌هاي مينياتوري درك شد. ‏BioMEM‏‌ها در حال حاضر يك موضوع بسيار مهم است كه تحقيقات بسياري در زمينه آن انجام شده است و كاربردهاي پزشكي مهم بسياري دارد. در حالت كلي مي‌توان ‏BioMEM‏‌ها را به عنوان "دستگاه‌ها ( وسايل) يا سيستم‌هايي ساخته شده با روش‌‌هاي الهام گرفته شده از ساخت در ابعاد ميكرو /نانو، كه براي پردازش، تحويل 2، دستكاري3، تحليل يا ساخت ذرات 4 شيميائي و بيولوژيك استفاده مي‌شود"، تعريف كرد. اين وسايل و سيستم‌ها همه واسطه‌هاي علوم زندگي و ضوابط پزشكي با سيستم‌هاي با ابعاد ميكرو و نانو را شامل مي‌شود. حوزه‌هاي تحقيقات و كاربردها در ‏BioMEM‏ از تشخيص بيماري‌ها مانند ميكرو آرايه‌هاي پروتئيني و‏DNA، تا مواد جديدي براي ‏BioMEM، مهندسي بافت، تغيير و اصلاح5 سطح، ‏BioMEM‏‌هاي قابل كاشت، سيستم‌هائي براي رهايش دارو و.... را شامل مي‌شوند. وسايل و سيستم‌هاي فشرده‌ايي كه از ‏BioMEM‏‌ها استفاده مي‌كنند، به عنوان "آزمايشگاه روي يك چيپ"6 و سيستم‌هاي تحليل تمام ميكرو‏TAS ) ‎‏ ‏‎µ‎‏ يا ‏‎(micro-TAS ‎‏ 7 نيز شناخته مي‌شود. شكل (1) شماتيك رسم شده از قسمت‌هاي كليدي حوزه‌هاي تحقيقاتي را نشان مي‌دهد.‏

 

اصول مورد استفاده

BioMEM ‎‏ و وسايل مربوط مي‌تواند با سه دسته از مواد ساخته شود كه مي‌توان آنها را به‌صورت زير طبقه‌بندي كرد:

1- ميكرو الكترونيك و MEM‏‌ها، ‏

2- مواد پلاستيكي و پليمري مانند Poly dimethylsiloxane (PDMS)‎‏ و ... و image009.jpg

 

روي مواد گروه اول به صورت گسترده هم از ديدگاه تحقيقاتي و هم از نقطه نظر كاربرد گزارش داده شده است و به صورت متداول و رايج در وسايل و دستگاهها و ‏MEM‏‌ها استفاده قرار گرفته است. پردازش سيگنالهاي ‏BioMEM‏ با استفاده از روش‌هاي پليمري و ليتوگرافي نرم 8 به خاطر سازگار پذيري زيستي زياد و ساخت آسان ، كم هزينه و پيش نمونه سازي سريع9 كه در مورد مواد لاستيكي موجود است، بسيار جذاب است. استفاده از اين مواد براي كاربردهاي عملي به صورت مداوم در حال افزايش است. مواد مربوط به گروه سوم تقريبا بررسي نشده است. اما امكانات جديد و جالب بسياري را ارائه مي‌كند و مرز10جديدي ميان ‏BioMEM‏ و بيو نانو فناوري به وجود خواهد آورد. براي مثال در مهندسي بافت و سلول كه از فناوري ميكرو و نانو الهام گرفته شده است و نيز براي توسعه ابزار و وسايلي براي فهم اعمال و توابع سلولها و بيولوژي سيستم‌ها، استفاده از روش‌‌هاي ساخت ميكرو و نانو براي سنتز و ساخت مستقيم ساختار‌هاي زيست‌ فناوري مانند اندام مصنوعي و وسايل هيبريد11، طيف وسيعي از امكانات و فرصت‌ها را ارائه مي‌كند. كاربردهايي مانند توسعه آرايه‌هاي بر پايه سلول 12، مهندسي بافت و توسعه اندام‌هاي مصنوعي با استفاده از روش‌هاي ساخت در ابعاد ميكرو ونانو[برای مشاهده لینک ها باید به خانواده بزرگ پرشین وی بپیوندید. ] تنها شماري از امكانات بسيار وسيع و مهيج آن است.‏‏‏3- مواد و ذرات بيولوژيك مانند پروتئين‌ها، سلولها و بافتها، ... .‏

 

BioMEM‏ و كاربردهاي تشخيصي

تشخيص بزرگترين و كار شده‌ترين حوزه در ‏BioMEM‏ را تشكيل مي‌دهد. تعداد زياد و فزاينده اي از وسايل ‏BioMEM‏ براي كاربردهاي تشخيصي توسعه يافته است و در طي چند سال اخير به وسيله گروههاي زيادي در مقالات ارائه شده است. روش‌‌هاي طراحي و ساخت اين دستگاهها و نيز حوزه‌هاي كاربردي آنها به صورت قابل ملاحظه اي متفاوت است. به ‏BioMEM‏ براي كاربردهاي تشخيصي گاهي ‏Biochip‏ هم گفته مي‌شود. اين دستگاهها براي تشخيص سلولها، ميكرو ارگانيزمها، ويروس‌ها، پروتئين‌ها،DNA‏ و اسيد نوكلئيك‌هاي مربوطه و مولكول‌هاي كوچك كه از نظر بيوشيميائي مهم است، استفاده مي‌شود.‏

image010.jpg

‏ ‏

BioMEM و سنسورهاي بيوچيپ‏

‏ بيوسنسورها وسايل تحليلي13 است كه يك المان حساس از نظر بيولوژيك را با يك ترانسديوسر فيزيكي يا شيميائي تركيب مي‌كند تا به صورت كمي و انتخابي وجود يك تركيب خاص در يك محيط خارجي داده شده را تشخيص دهد. در طي دهه گذشته، ‏BioMEM‏ به عنوان بيوسنسورها استفاده شد است وبيوچيپ‌هاي حاصل امكان اندازه‌گيري‌هاي سريع، حساس و زمان حقيقي را فراهم مي‌كند. اين سنسورهاي ‏BioMEM‏ مي‌تواند جهت تشخيص سلولها، پروتئينها،‏DNA‏ يا مولكولهاي كوچك مورد استفاده قرار گيرد. بسياري از داده‌هاي ارائه شده تا امروز مربوط به يك سنسور است و اين سنسورها را مي‌توان به فرمت آرايه اي مجتمع نمود. تعداد زيادي روش تشخيصي در بيوچيپ‌ها و سنسورهاي ‏BioMEM‏ استفاده مي‌شوند، شامل : 1- مكانيكي 2- الكتريكي 3- نوري... شكل (2) شماتيك شرايط كليدي تشخيص را كه در سنسور‌هاي ‏BioMEM‏ و بيوچيپ‌ها استفاده مي‌شوند، را نشان مي‌دهد.

image011.jpg

 

BioMEM‎‏ و تشخيص مكانيكي‏

‏ اخيرا از سنسورهاي كانتيلور14 با ابعاد نانو و ميكرو روي يك چيپ براي تشخيص مكانيكي واكنش‌ها و ذرات بيوشيميائي استفاده شده است. همان طور كه در شكل (‏a‏-2) نشان داده شده است، اين سنسورها ( كه ساختار شبيه تخته پرش شنا دارند) را مي‌توان در دو مود به نا مهاي مود سنس فشار و حالت اندازه‌گيري جرم، استفاده كرد. در مود اندازه‌گيري فشار، فعل و انفعال بيوشيميائي به صورت انتخابي روي يك طرف سنسور انجام مي‌شود. تغيير در انرژي آزاد سطح15 باعث تغيير درفشار سطح مي‌شود، كه يك خمش قابل اندازه گيري در سنسور ايجاد مي‌كند. بنابراين تشخيص بدون برچسب16 تركيب بيومولكولي، ممكن مي‌شود. سپس خمش سنسور را مي‌توان به روش نوري ( انعكاس ليزر از سطح سنسور داخل يك دتكتور موقعيت، همانند در يك ‏AFM‏ ) يا به روش الكتريكي( مقاومت پيزو كه در لبه ثابت سنسور قرار داده مي‌شود) اندازه گيري نمود.

يكي از مزاياي اصلي اين سنسورها، توانائي آنها براي تشخيص تركيبات داراي فعل و انفعال داخلي بدون نياز به افزودن برچسب قابل تشخيص به صورت نوري روي ذرات تركيب شونده، است. در سالهاي اخير پيشرفتهاي چشمگير و جالبي در تشخيص بيوشيميائي با استفاده از سنسورهاي كانتيلور رخ داده است. تشخيص بدون برچسب و مستقيم ‏DNA‏ و پروتئين‌ها به وسيله كانتيلور سيليكوني انجام شده است. (به صورت شماتيكي در شكل (3) نشان داده شده است) هيبريديزاسيون ‏DNA‏ و تشخيص ‏single based mismatch‏ روي لايه‌هاي به‌هم بافته ‏DNA‏ به‌وسيله كانتيلورهائي با يك لايه نازك طلا روي يك سمت آنها، انجام شده است. لايه‌هاي به‌هم بافته ‏DNA، به لايه طلا متصل مي‌شود و زماني كه لايه‌هاي بهم بافته هدف با لايه‌هاي بهم بافته گيرنده تركيب مي‌شوند، خمش كانتيلورها قابل تشخيص است. اين سنسورها را همچنين مي‌توان جهت تشخيص پروتئين‌ها و ماركرهاي سرطان مانند آنتي ژن‌هاي خاص پروستات ( ماده اي كه در سلولهاي مخاطي پروستات پنهان شده است و اغلب براي تشخيص سرطان پروستات تست مي‌شود) استفاده نمود كه در شرايط مناسب باليني، در پس زمينه آلبومين سرم انسان در حد ‏ng/ml‏2/0 تشخيص داده شده است. (شكل 4) ‏

image012.jpg

 

BioMEM ‎‏ و تشخيص الكتريكي

‏ تكنيك‌هاي تشخيص الكتريكي و الكتروشيميايي تقريبا به صورت معمول و مرسوم در بيوچيپ‌ها و سنسورهاي ‏BioMEM ‎‏ هم مورد استفاده قرار گرفته است. اين روش‌ها وقتي با روش‌هاي تشخيص نوري مقايسه مي‌شود، مي‌تواند قابليت‌هائي نظير انتقال‌پذير بودن و مينياتورسازي را از خود ارائه كند. اگر چه، در پيشرفتهاي اخير در مجتمع سازي مولفه‌هاي نوري روي يك چيپ نيز مي‌تواند وسايل مجتمع كوچكتري توليد كند. بيوسنسورهاي الكتروشيميائي سه نوع پايه را شامل مي‌شوندكه در شكل ‏b‏-2 نشان داده شده است: 1- بيوسنسورهاي آمپرومتريك كه جريان الكتريكي مربوط به الكترونهاي درگير در فرآيندهاي اكسايش را شامل مي‌شود. 2- بيوسنسورهاي پتانسيومتري كه تغيير پتانسيل در الكترودها به خاطر يونها يا واكنش‌هاي شيميائي در يك الكترود را اندازه مي‌گيرد.3- بيوسنسورهاي هدايت‌سنج17 كه تغييرات هدايت وابسته با تغيير در كل محيط يوني بين دو الكترود را اندازه مي‌گيرد. گزارش‌هاي بيشتري روي سنسورهاي آمپرومتريك و پتانسيومتريك به ويژه به خاطر زمينه قاطع و مسلم و ثابت الكترو شيمي گزارش شده است و بسياري از اين سنسورها در مقياسهاي ميكرو و نانو استفاده شده‌اند. مرسومترين نمونه‌هاي بيوسنسورها ي آمپرومتريك از يك واكنش اكسايش ( كاهش) كه آنزيم كاتاليزور آن است،18 استفاده مي‌كنند.

image013.jpg

سنسورهاي پتانسيومتريك از اندازه گيري پتانسيل در يك الكترود مرجع نسبت به الكترود ديگر استفاده مي‌كند. متداولترين فرم سنسورهاي پتانسيومتريك ترانزيستورهاي اثر ميداني حساس به يون ‏‎(ISFET)‎‏ يا ترانزيستورهاي اثرميداني شيميائي ‏‎(Chem-FET) ‎‏ است. اين وسايل به عنوان سنسورهاي ‏Ph‏ به صورت تجاري موجود و نمونه‌هاي زيادي از آنها ذكر شده است.

سنسورهاي پتانسيومتريك با يونو فورز انتخاب كننده يون در ‏PVC‏ 19اصلاح شده، براي تشخيص آناليت‌هاي سرم انسان استفاده شده است. تنفس سلولي و اسيد سازي ناشي از فعاليت سلولها به وسيله ‏ISFET‏‌هاي ‏CMOS‏ اندازه گيري شده است. سنسور پتانسيومتريك با قابليت آدرس دهي نوري ‏LAPS‏ براي تشخيص تغيير در غلظت يون هيدروژن و بنابراين ‏Ph‏ با استفاده از يك وسيله اثر ميداني در سيليكون در حضور نور، استفاده شده است. سنسورهاي پتانسيومتريك با استفاده از سيم‌هاي سيليكوني نانو (همان طور كه به صورت شماتيكي در شكل 6 نشان داده شده است) و نانو تيوب‌هاي كربن به عنوان سنسورهاي اثر ميداني، به مقياس نانو كاهش بعد داده است، براي رسيدن به اين مزيت: بالا بردن حساسيت به خاطر نسبت سطح به حجم بالاتر.

جمع كردن اين سنسورهاي با ابعاد نانو در آزمايشگاه روي چيپ‌ها مشكلتر است. اما پيشرفتهاي اخير در روش‌هاي توليد از بالا به پايين 20 براي ارائه اينگونه ساختارهاي با ابعاد نانو استفاده شده‌اند. (نشان داده شده درشكل (5))‏

سنسورهاي پتانسيومتريك در مقياس ميكرو نيز براي انجام تشخيص بدون برچسب هيبريديزاسيون ‏DNA‏ استفاده شده است. اين سنسورها به نحوي در داخل كانتيلورها جاداده شده است كه مي‌توان از آنها داخل كانالهاي ميكرو سيال استفاده نمود. هيبريديزاسيون ‏DNA‏ از طريق اندازه گيري اثر ميداني در سيليكون با بار ذاتي مولكولي روي ‏DNA، با استفاده از يك بافر ‏Poly-L-lysine‏ بعدا تشخيص داده شد.

سنسورهاي هدايت سنج، تغييرات در امپدانس الكتريكي بين دو الكترود را اندازه مي‌گيرد كه اين تغييرات مي‌تواند در يك واسطه يا در فضاي حجيم21 باشد و مي‌تواند براي تشخيص واكنش و فعل و انفعال بيومولكولي بين ‏DNA، پروتئين‌ها و فعل و انفعال آنتي‌ژن/ آنتي‌بادي يا دفع محصولات متابوليك سلولي استفاده شود. وسايل با ساختار ميكرو22 براي اندازه‌گيري فعاليت نوروني خارج سلولي براي يك مدت طولاني استفاده شده‌ است. روش‌هاي هدايت به خاطر سادگي و سهولت استفاده‌شان جذاب هستند. از آنجا كه يك الكترود مرجع ويژه نياز نيست و براي تشخيص رنج وسيعي از ذرات مانند عوامل ‏biothreat‏ ، مواد بيوشيميائي، سموم و اسيد نوكلئيك‌ها استفاده شده‌اند. سنسورهاي هدايت‌سنج اطلاعات را روي قدرت 23 يوني در الكتروليتها تامين مي‌كند، اگر با غشاي آنزيمها كوپل شود، مي‌توانند خاصيت انتخابي داشته باشد. اين سنسورها براي تشخيص آناليت‌هاي متفاوت مورد استفاده قرار گرفته‌اند، براي مثال اوره، گلوكزو غيره.‏

سنسورهاي بر پايه سلول هم دسته مهمي از سنسورها است كه در سالهاي اخير بيشتر مورد توجه قرار گرفته است. استفاده از سلولها به عنوان سنسورها روش بسيار جذاب و جالبي براي ساختن دتكتورهاي بيوشيميائي حساس است. ( مطابق شكل 6) سلولهاي سالم با آنزيم‌ها، كانالها و گيرنده‌هاي بسيار حساس و انتخابي آنها، كانديداهاي بسيار جذابي جهت توسعه بيوسنسورها است. مزيت اصلي سلولها به عنوان بيوسنسورها اين است كه سلولها خاصيت انتخابي و ذاتي طبيعي نسبت به مواد شيميائي فعال از نظر بيولوژيكي دارد و مي‌تواند در شرايطي كه از نظر فيزيولوژيك مناسب است، با آناليت‌ها واكنش دهد. تبديل سيگنالهاي سلول سنسور، مي‌تواند با اندازه‌گيري پتانسيل‌هاي سلولي و غشائي، تغييرات امپدانس، فعاليت متابوليك يا به صورت نوري با استفاده از فلورسانس يا لومينسانس به دست آيد. نورونها روي سطوح با ساختار ميكرو پرورش يافته و تغييرات در سيگنالهاي الكتريكي آنها ناشي از در معرض مواد شيميائي مضر و سموم قرار گرفتن، روي يك چيپ اندازه‌گيري شده است.

image014.jpg

لینک به دیدگاه

سنسورهاس اولتراسونیک

سنسورهای اولتراسونیک

برای برآورد فاصله از امواج مافوق صوت ( فرا صوت یا همان ) بهره می گیرد.

طرز کار این نوع سنسورها به این صورت است که فاصله زمانی مابین ارسال امواج تا دریافت سیگنال اکو را اندازه می گیرند و با توجه به سرعت صوت در آن محیط ، فاصله تا مانع را برآورد می کنند.

در

سنسورهای اولتراسونیکانواع مختلفی موجود می باشند که در صنعت کاربردهای وسیعی دارند.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

ultrasonic schema

 

 

فرکانس مورد استفاده در

سنسورهای اولتراسونیک

معمولا 40- 60 کیلو هرتز می باشد که خارج از بازه شنوایی انسان می باشد.

مزیت اصلی این سنسورها ، تشخیص اجسام صرف نظر از رنگ ،شکل و سطح آنها به وسیله امواج مافوق صوت است.

 

امروزه

یکی از ارکان مهم اتوماسیون صنعتی بشمار رفته و کاربردهای وسیع و گوناگونی در صنایع مختلف دارند.

 

 

 

سنسورهای اولتراسونیک

عموما می توانند در هر موقعیتی به کار گرفته شوند ولی باید از بکار گرفتن آنها در شرایطی که باعث رسوب گذاری سخت بر روی سطح سنسور

 

 

اولتراسونیکمی شود اجتناب کرد.

وجود قطرات آب و رسوبات سخت بر روی سطح گیرنده می تواند موجب اختلال در کارکرد

شود.

 

با این وجود،گرد و غبار و ترشحات رنگ بر روی کارکرد

سنسورهای اولتراسونیک

اثر منفی نخواهند گذاشت.

 

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

ultrasonic sensors installation notes

 

برای شناسایی اجسام با سطح صاف و ناصاف، زاویه

سنسورهای اولتراسونیک

با سطح جسم باید 90 درجه با تلورانس 3 درجه باشد.

از سوی دیگر جسم ناصاف می تواند انحراف زاویه بیشتری داشته باشد.برای

سنسورهای اولتراسونیک

جسم ناصاف به جسمی اطلاق می شود که ارتفاع پستی و بلندی آن بزرگتر یا مساوی طول موج سیگنال ارسالی باشد.

در این حالت امواج منعکس شده در گستره بیشتری منعکس می شوند بنابراین رنج کاری کمتر می شود.

 

درحالتی که جسم مورد نظر ناصاف باشد ماکزیمم انحراف زاویه قابل قبول و بیشترین محدوده شناسایی ممکن باید با آزمون و خطا مشخص شود.

 

فاصله مجاز نصب سنسورهای اولتراسونیک

 

در جدول زیر مینیمم فاصله مجاز برای نصب چند

سنسورهای اولتراسونیک

غیر سنکرون در مجاورت هم آمده است.

سنسورهای اولتراسونیک

نباید در فاصله کمتر از فاصله مجاز نصب شوند زیرا بر روی کارکرد یکدیگر اثر می گذارند.

فاصله های ذکر شده در جدول باید دقیقا رعایت شوند.

 

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

جدول فاصله نصب سنسورهای اولتراسونیک

 

 

 

در حالتی که جسم به صورت مورب با

سنسورهای اولتراسونیک

قرارگیرد ، ممکن است موج منعکس شده از سنسور مجاور دریافت شود و موجب خطا شود.

فاصله مناسب برای نصب در این حالت باید با آزمون و خطا مشخص شود.

 

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

جسم مورب در مقابل سنسور اولتراسونیک

 

 

 

بعضی از مدلهای

سنسورهای اولتراسونیک

این قابلیت را دارند که باهم سنکرون شوند و واضح است که در این حالت حداقل فاصله مجاز برای نصب سنسورها در مقایسه با اعدادی که در جدول آمده کاهش می یابد.

برای اطلاعات بیشتر به برگ راهنمای سنسورها مراجعه کنید. گرچه این موضوع در رابطه با همه سنسورهای التراسونیک عمومیت ندارد.

 

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

سنسور های سنکرون شده

 

مسیر امواج اولتراسونیک

 

امواج اولتراسونیک از سطح سنسورهای اولتراسونیک بصورت مستقیم منتشر می شوند ، اما میتوان مسیر امواج صوتی را توسط یک سطح صاف با حداقل تلفات تغییر داد.

به همین طریق میتوان امواج صوتی را تا 90 درجه منحرف کرد ، که امواج اولتراسونیک هم از این قائده مستثنی نیستند.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

انحراف مسیر امواج اولتراسونیک

دقت سنسورهای اولتراسونیکو تاثیرات محیطی

 

دقت به اختلاف بین فاصله واقعی سنسور تا جسم و فاصله محاسبه شده توسط سنسورهای اولتراسونیکگفته میشود.

این دقت قابل حصول به خصوصیات سطح انعکاسی جسم و به خصوصیات فیزیکی که بر روی سرعت صوت در هوا اثر می گذارند بستگی دارد.

در اجسامی که انعکاس پذیری سطحشان پایین است و یا ارتفاع پستی بلندی سطحشان بزرگتر از طول موج امواج صوتی التراسونیک است دقت اندازه گیری تا حدودی کاهش می یابد.

 

 

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

 

 

 

تاثیر دمای هوا:

دمای هوا بیشترین اثر را روی سرعت صوت و متعاقبا روی دقت اندازه گیری سنسورهای اولتراسونیکخواهد داشت.

(0.17%K)

به همین جهت اکثر سنسورهای اولتراسونیک شرکت میکروسونیک مجهز به مدار جبرانساز حرارتی هستند.

(Temperature Compensation)

فشار هوا:

 

تغییرات فشار روی سرعت صوت تاثیر چندانی نخواهد گذاشت

با این وجود شرکت میکروسونیک سنسورهای اولتراسونیک ویژه ای ارایه کرده که قادر است تا فشار 6 بار با دقت مطلوبی کار کند.

 

رطوبت نسبی:

 

در مقایسه با اثرات حرارتی می توان اثر رطوبت هوا بر دقت را نادیده گرفت.

یعنی چنانچه دمای هوا بر اثر تغییرات رطوبتی تغییری نکند ، می توان اینطور قلمداد کرد که این تغییرات رطوبت نسبی محیط تاثیری بر روی کار سنسورهای اولتراسونیک نداشته است.

 

لینک به دیدگاه

کاربرد سنسور اولتراسونیک

 

از کاربردهای متنوع سنسورالتراسونیک می توان موارد زیر را برشمرد:

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
روباتیک

رباتیک:

سنسور های اولتراسونیک مدل pico + شرکت میکروسونیک بدلیل داشتن ابعاد کوچک و قطر 18mm برای استفاده در بازوهای ربات ها بسیار مناسب می باشند.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
کنترل سطح

کنترل سطح همزمان:

سنسور های ولتراسونیک مدل pico + شرکت میکروسونیک برای تشخیص همزمان چند شیء هم می توانند به کار روند ( به طور مثال وجود جعبه های نوشابه داخل صندوق) همچنین برای بررسی خالی بودن بطری های پلاستیکی و نیز تشخیص ارتفاع آنها و یا نبودن بطری ها (واژگون شدن) روی کانوایر بکار می رود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
اشخاص

تشخیص اشخاص:

در این کاربرد استفاده از سنسورهایی با فاصله شناسایی وسیع تر مناسب می باشد زیرا هر چه فاصله شناسی ( فاصله دید )امواچ التراسونیک بزرگتر باشد فرکانس

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
موقعیت

تشخیص موقعیت:

یکی از کاربرد های مهم سنسورالتراسونیک تشخیص موقعیت سوژه در محل از پیش تعیین شده می باشد سنسورالتراسونیک می توانند به راحتی این کار را برای اجسام شفاف مانند شیشه انجام دهند. (در این کاربرد سنسورالتراسونیک باید کاملا بر سوژه عمود قرار گیرد ).

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
جانمایی

مانیتورینگ جانمایی صفحات ( محل قرار گرفتن صفحات )

هنگامی که سوژه مورد نظر برای شناسایی جاذب امواج صوت باشد یا بنا به اندازه و موقعیتش داخل صفحه باعث پراکنده شدن امواج التراسونیک شود ، از روش سد منعکس کننده ( Reflective Barrier ) استفاده می شود. به این صورت که سد منعکس کننده پشت سوژه قرار داده می شود. سنسورالتراسونیکبا خروجی دیجیتال و کار در مود ویندو هنگامی که جسمی مقابل سد منعکس کننده قرار می گیرد سیگنالی را از خود ساتع می کند.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
سنجش حجم

اندازه گیری حجم:

با استفاده ازسنسورالتراسونیک و کنترلر wms-4/14 با 4 خروجی آنالوگ می توان همزمان ابعاد یک جسم مکعبی شکل را اندازه گیری کرد ( به طور مثال می توان با استفاده از سهسنسورالتراسونیکارتفاع ، طول و عرض سوژه مورد نظر را اندازه گیری کرد )

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
کنترل کشش

کنترل کشش:

یکی از کاربردهای جالب سنسورالتراسونیک کنترل کشش ( برای مثال اندازه انحنای پارچه در صنایع نساجی ) می باشد به نحوی که سنسور می تواند فاصله قله انحنا را تا سطح مشخص اندازه گیری نماید. بدیهی است تغییر در این اندازه نشان دهنده اندازه کشش طولی می باشد.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
کنترل کیفیت

کنترل کیفیت:

یکی از کاربردهای مهم سنسورالتراسونیک ، استفاده در بخش کنترل کیفیت در خطوط تولید می باشد. برای مثال سنسورالتراسونیک مدل pico +شرکت میکروسونیک همراه خروجی دیجیتال pnp برای شناسایی بطری های خیلی بلند یا کوتاه یا تشخیص بطری های واژگون شده روی کانوایر خط تولید بکار می رود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
سطح

تشخیص سطح در فشار بالا ( تا 6bar ) :

در بعضی از مخازن به دلیل فشار بالای مخزن نمی توان از سنسورهای معمولی استفاده کرد.در این گونه مواقع می توان از سنسورهای التراسونیک

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
شرکت میکروسونیکاستفاده کرد.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
کشش نخ

 

کنترل کشش نخ:

 

همانطور که در قبل اشاره شد از سنسورالتراسونیک می توان جهت کنترل کشش طولی استفاده نمود. با توجه به اینکهسنسورالتراسونیکقابلیت تشخیص اجسام باریک مانند نخ را دارد ، درهنگام پیچیدن نخ یا سیم نیز استفاده می شود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
ارتفاع

 

کنترل ارتفاع در انبار کردن اجسام:

 

می توان از سنسورالتراسونیک برای تشخیص ارتفاع دسته ای از مواد مانند صفحه های چوب ، قاب های شیشه ، ورقه های کاغذ و پنل های پلاستیکی رنگی در خط تولید استفاده کرد.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
فویل و فیلم

 

مانیتورینگ فویل و فیلم :

 

مانیتورینگ فیلم و فویل در دستگاه های بسته بندی به راحتی توسط سنسوراولتراسونیک مدل pico +شرکت میکروسونیک انجام می شود. اگر مواد مورد نظر برای شناسایی سطح کافی نداشته باشند می توان از روش سد منعکس کننده استفاده کرد.

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
کنترل سطح

کنترل سطح:

علاوه بر مخازن پرفشار ( که قبلا مطرح شد ) ،سنسورالتراسونیک در مخازن عادی نیز برای تشخیص ارتفاع از چند میلیمتر تا 6 متر بکار می روند و همچنین برای کنترل سطح ماکزیمم ، مینیمم با دو خروجی دیجیتال یا یک خروجی آنالوگ 0-10v و 4-20mA و همچنین به طور خاص با خروجی INTERBUS در دسترس هستند.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
همپوشانی

تشخیص همپوشانی ورق:

سنسورهای التراسونیک

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
شرکت میکروسونیک با استفاده از این قابلیت می تواند دو برگه از جنس کاغذ ، فیلم ، برگه نازک فلز را که به هم چسبیده اند را شناسایی کرده و از این اتفاق جلوگیری کند و سنسورهای التراسونیک
برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
شرکت میکروسونیک برای مواد ضخیم تر مانند ورقه های پلاستیکی بکار می رود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
غیرمستقیم

 

تشخیص غیر مستقیم بکمک منعکس کننده امواج صوتی:

همانطور که قبلا در مطلب مربوطه اشاره شده است ، می توان مسیرامواج التراسونیک را به اندازه 90 درجه توسط یک جسم منعکس کننده خوب (جسم صاف و براقی که شرایط انعکاسی مطلوبی دارد ) تغییر داد. بدین ترتیب می توان سنسورهای التراسونیک را در محلهایی که به دلیل شرایط کمبود فضا و یا نحوه قرارگیری خطوط تولید ، امکان نصب سنسور بصورت عمودی وجود ندارد ، به شکل موازی با خط تولید نیز مستقر نمود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
تزریق

کاربرد در دستگاه تزریق پلاستیک:

با استفاده از سنسورهای التراسونیک

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
شرکت میکروسونیکو کنترلر آنها می توان همزمان از سه طرف قطر خروجی دستگاه تزریق پلاستیک را کنترل نمود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
جسم متخلخل

تشخیص جسم متخلخل یا اسفنجی :

تشخیص اجسامی که منعکس کننده خوبی نیستند ( مانند اجسام متخلخل ، فوم ، اسفنج ، خاک اره ، شن و …) به طریق استفاده از روش سد منعکس کننده در مود کاری ویندو توسطسنسورالتراسونیکبه راحتی انجام می شود. برای این منظور یک منعکس کننده به صورت موقت در پشت سوژه قرار داده می شود ، هنگامی که یک جسم در مقابل منعکس کننده قرار گیرد سیگنال خروجی توسط سنسورالتراسونیک تولید می شود.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
اتومبیل

کاربرد در اتومبیل:

ازسنسورالتراسونیک می توان در وسایل نقلیه برای جلوگیری از برخورد با مانع یا وسایل نقلیه دیگر استفاده کرد. می توان تا 4 سنسور در جلو و عقب وسیله نقلیه برای این منظور بهره برد. امروزه بسیاری از سازندگان اتوموبیل این گزینه را بصورت پیش فرض و یا آپشنال بر روی خودرو تولیدی قرار میدهند.

 

برای مشاهده این محتوا لطفاً ثبت نام کنید یا وارد شوید.
قطر

تشخیص قطر:

قطر یک جسم رول شده یا لوله شده را می توان باسنسورالتراسونیک اندازه گیری کرد. بدین ترتیب سنجش میزان محصول ( برحسب متراژ یا وزن ) به راحتی و با دقت بالا انجام می شود.

لینک به دیدگاه

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید .

مهمان
ارسال پاسخ به این موضوع ...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   حذف قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.

×
×
  • اضافه کردن...